Дата документа: 26/06/25 K1986BK025 Errata Notice

Ошибки в микросхеме К1986ВК025

Настоящий документ содержит описание всех ошибок, выявленных в микросхемах на момент создания данной версии документа.

Статус документа

Настоящий документ является НЕКОНФИДЕНЦИАЛЬНЫМ.

Адрес в сети Интернет

http://www.milandr.ru

Обратная связь по продукту

Если у Вас есть какие-либо комментарии или предложения по данному продукту, свяжитесь с Вашим поставщиком, указав:

- название продукта;
- комментарии, либо краткое описание Ваших предложений;
- предпочтительный способ связи с Вами и контакты (организация, электронная почта, номер телефона).

Обратная связь по документу

Если у Вас есть какие-либо комментарии или предложения по данному документу, пожалуйста, пришлите их на электронную почту support@milandr.ru, указав:

- название документа;
- номер и/или дата документа;
- номер страницы;
- комментарии, либо краткое описание Ваших предложений;
- предпочтительный способ связи с Вами и контакты (организация, электронная почта, номер телефона).

Оглавление

Обзор
Категории ошибок
Сводная таблица ошибок
Ошибки категории 1
00103 ависание микросхемы при просадке питаний V_{CCA} и V_{CC} 7
Ошибки категории 2
0001 Паразитные импульсы высокой частоты на фронтах синхросигнала генератора
LSE8
$0002 \mathrm{He}$ запуск микросхемы при несоблюдении порядка подачи питаний V_{CCA} и $V_{CC}9$
0005 Возникновение исключительной ситуации при чтении ячейки FLASH-памяти
в момент выполнения инструкции из адреса читаемой ячейки (пример расчёт
CRC суммы программы)10
0006 Недопустимо использование пониженного напряжения питания менее +2,4В11
0009 Автоматический выбор канала тока для расчета мощностных характеристик.12
0012 Ошибочное чтение защищенных адресных пространств FLASH-памяти13
Ошибки категории 3
0003 Смещение порога срабатывания детектора напряжения батарейного питания
PVDB14
0004 Отсутствие тримминга HSI генератора после старта программы15
0007 Накопление случайных данных с помощью ГСЧ с некорректной энтропией16
0008 Частота генератора HSI составляет несколько кГц при напряжении питания
меньше 2,7В17
0011 Ошибка чтения данных FLASH-памяти при смене режима работы FLASH или
изменении Delay18
0013 Пропуск канала АЦП при последовательном преобразовании нескольких
каналов после выключения АЦП19
0014 Остановка счета IWDG при отсутствии частоты PCLK в процессе
перезагрузки значения таймера или обновления значения предделителя20
0015 Команда dret не декодируется как illegal instruction при исполнении
не в Debug-режиме22
0016 Некорректная работа аппаратной точки останова на коде в Debug ROM23
0017 Ошибка в tinfo-регистре модуля отладки
0018 Команда c.lwsp (если rd == x0) не декодируется как illegal instruction25
0019 Чтение CSR-регистров командами csrrc, csrrsi и csrrci вызывает запись26
0020 Состояние вывода JTAG TDO (PA7) не определено после подачи питания27
0021 Пропуск импульса SEC_CLK при использовании калибровки RTC_CLK28
Лист регистрации изменений

Обзор

Настоящий документ содержит описание ошибок в продукте с указанием категории критичности. Каждое описание содержит:

- уникальный идентификатор ошибки;
- текущий статус ошибки;
- где существует отклонение от спецификации и условия, при которых возникает ошибка;
- последствия возникновения ошибки в типичных применениях;
- ограничения, рекомендации и способы обхода ошибки, где это возможно.

Категории ошибок

Ошибки разделены на три категории критичности:

Категория 1.

Ошибочное поведение, которое невозможно обойти. Ошибки данной категории серьезно ограничивают использование продукта во всех или в большинстве приложений, что делает устройство непригодным для использования.

Категория 2.

Ошибочное поведение, которое противоречит требуемому поведению. Ошибки данной категории могут ограничивать или серьезно ухудшать целевое использование указанных функций, но не делают продукт непригодным для использования во всех или в большинстве приложений.

Категория 3.

Ошибочное поведение, которое не было изначально определено, но не вызывает проблем в приложениях при соблюдении рекомендаций.

Сводная таблица ошибок

Дата документа: 26/06/25

В таблице указывается, в каких версиях микросхем присутствует ошибка. Наличие ошибки обозначено символом «Х».

Версия микросхем определяется датой изготовления, указанной на крышке корпуса микросхемы в формате $\Gamma\Gamma$ нде $\Gamma\Gamma$ – год изготовления, Π – неделя изготовления.

ID	Описание	Микросхемы, изготавливаемые с даты							
	Описанис	2038 (рев.1)	2124 (рев.1.1)	2140 (рев.2)					
Категория 1									
0010	Зависание микросхемы при просадке питаний V_{CCA} и V_{CC}	X	X	X					
Категория 2									
0001	Паразитные импульсы высокой частоты на фронтах синхросигнала генератора LSE	X	X						
0002	Не запуск микросхемы при несоблюдении порядка подачи питаний V_{CCA} и V_{CC}	X							
0005	Возникновение исключительной ситуации при чтении ячейки FLASH-памяти в момент выполнения программы из адреса читаемой ячейки.	X	X						
0006	Недопустимо использование пониженного напряжения питания менее +2,4B.	X							
0009	Автоматический выбор канала тока для расчета мощностных характеристик	X	X	X					
0012	Ошибочное чтение защищенных адресных пространств FLASH-памяти	X	X	X					
Категор	3 вид								
0003	Смещение порога срабатывания детектора напряжения батарейного питания PVDB	X	X						
0004	Отсутствие тримминга HSI генератора после старта программы	X	X						
0007	Накопление случайных данных с помощью ГСЧ с некорректной энтропией	X	X						

ID		Микросхемы, изготавливаемые с даты		
	Описание	2038 (рев.1)	2124 (рев.1.1)	2140 (рев.2)
0008	Частота генератора HSI составляет несколько кГц при напряжении питания меньше 2,7В	X	X	X
0011	Ошибка чтения данных FLASH-памяти при смене режима работы FLASH или изменении Delay	X	X	X
0013	Пропуск канала АЦП при последовательном преобразовании нескольких каналов после выключения АЦП	X	X	X
0014	Остановка счета IWDG при отсутствии частоты PCLK в процессе перезагрузки значения таймера или обновления значения предделителя	X	X	X
0015	Команда dret не декодируется как illegal instruction при исполнении не в Debug-режиме	X	X	X
0016	Некорректная работа аппаратной точки останова на коде в Debug ROM	X	X	X
0017	Ошибка в tinfo-регистре модуля отладки	X	X	X
0018	Команда c.lwsp (если rd == x0) не декодируется как illegal instruction	X	X	X
0019	Чтение CSR-регистров командами сsrrc, csrrsi и сsrrci вызывает запись	X	X	X
0020	Состояние вывода JTAG TDO (PA7) не определено после подачи питания	X	X	X
0021	Пропуск импульса SEC_CLK при использовании калибровки RTC_CLK	X	X	X

Ошибки категории 1

Дата документа: 26/06/25

00103ависание микросхемы при просадке питаний V_{CCA} и V_{CC}

Статус

Исследование.

Описание

Зависание микросхемы.

Условия

При просадке питаний V_{CCA} и V_{CC} до уровня 1,9 B-2,0 В микросхема зависает без возможности возврата в рабочий режим функционирования.

Последствия

Функциональный режим работы не стартует.

Рекомендации и способы обхода

Обеспечить включение внутреннего сторожевого таймера IWDG в бутовой программе или непосредственно после перехода в пользовательскую программу, тактируя ядро на частоте HSI/HSE = 8 МГц. После инициализации IWDG при необходимости осуществлять настройку PLL и переход на более высокую частоту тактирования ядра. Если сброс обеспечивается внешней микросхемой WatchDog, подключенной ко входу nRESET, то никаких действий не требуется.

Ошибки категории 2

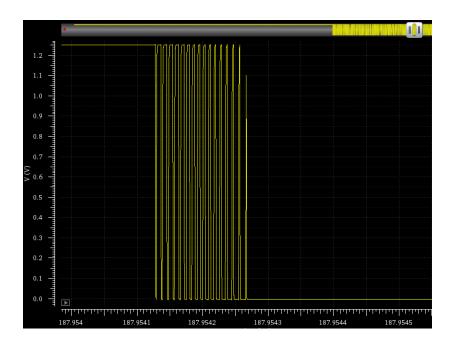
Дата документа: 26/06/25

0001 Паразитные импульсы высокой частоты на фронтах синхросигнала генератора LSE

Статус

Исправлено в ревизии 2 (исследование).

Описание


При работе LSE генератора от внешнего кварцевого резонатора на фронтах синхросигнала наблюдаются паразитные импульсы высокой частоты.

Условия

Выбор режима работы LSE в регистре BKP_CLK с помощью бит lsebyp=0, lseon=1.

Последствия

Синхросигнал на выходе LSE не равен частоте 32 кГц. Что приводит к невозможности использования часов реального времени.

Рекомендации и способы обхода

Установить на вход OSC_IN32 внешний генератор 32 кГц. Вход OSC_OUT32 оставить неподключенным (не использовать). В регистре BKP_CLK установить режим работы lsebyp=1, lseon=1.

0002 Не запуск микросхемы при несоблюдении порядка подачи питаний V_{CCA} и V_{CC}

Статус

Исправлено с ревизии 1.1.

Описание

Микросхема не стартует при подаче питаний.

Условия

Подача питаний V_{CCA} и V_{CC} на микросхему происходит асинхронно, с разными фронтами, от разных источников питания.

Последствия

Аналоговая часть микросхемы переходит в тестовый режим работы. Функциональный режим работы не стартует.

Рекомендации и способы обхода

Гарантировать подачу питания V_{CCA} позже V_{CC} или из одного источника одновременно. При подаче питаний из разных источников обеспечить равные фронты нарастания питаний с помощью фильтрующих компонентов на плате.

0005 Возникновение исключительной ситуации при чтении ячейки FLASH-памяти в момент выполнения инструкции из адреса читаемой ячейки (пример расчёт CRC суммы программы)

Статус

Исправлено в ревизии 2 (исследование).

Описание

Возникновение исключительной ситуации в ядре микросхемы.

Условия

Выполнение операции чтения программой пользователя, размещённой во FLASH, ячейки памяти FLASH с адресом исполняемой в данный момент инструкции и установленной задержкой доступа Delay=1.

Последствия

Микросхема переходит на вектор обработки исключительной ситуации.

Рекомендации и способы обхода

Производить чтение FLASH-памяти программой пользователя только при размещении её в ОЗУ или ОТР при Delay=1. Если не требуется установка Delay=1, то при Delay=0 исключительной ситуации возникать не будет и программа пользователя может быть размещена в любой памяти.

0006 Недопустимо использование пониженного напряжения питания менее +2,4B

Статус

Исправлено с ревизии 1.1.

Описание

Не запуск микросхемы на пониженном питании при отрицательной температуре.

Условия

Напряжение питания микросхемы менее +2,4B и температура окружающей среды -50°C.

Последствия

Микросхема не функционирует в соответствии со спецификацией.

Рекомендации и способы обхода

Обеспечить напряжение питания микросхемы не менее +2,4В.

0009 Автоматический выбор канала тока для расчета мощностных характеристик

Статус

_

Описание

При задании в регистре ADCUI_F0MD0 режима автоматического выбора канала I0/I3 тока, в блоке F0 не всегда происходит своевременное переключение канала тока I0/I3, если разница токов превышает 6 %.

Условия

Установка значения поля F0SEL_I_CH регистра ADCUI_F0MD0 в 2' b 00 или 2'b 11 и разница RMS-токов I0 и I3 больше или равна 6%.

Последствия

Не происходит аппаратное переключение токовых каналов для последующих расчетов мощностных характеристик.

Рекомендации и способы обхода

Автоматическое переключение токовых каналов необходимо реализовывать программным способом в ручном режиме, то есть не задействуя аппаратный механизм.

0012 Ошибочное чтение защищенных адресных пространств FLASH-памяти

Статус

Не исправлено.

Дата документа: 26/06/25

Описание

Биты ОТР 131064 – 131067 позволяют установить защищенные адресные пространства FLASH-памяти в диапазоне адресов 0x1000_0000-0x1003_FFFF. Однако доступ к FLASH-памяти также дублируется в адресном пространстве 0x1004_0000-0x1FFF_FFFF, в котором защита FLASH-памяти не осуществляется.

Условия

С помощью бит ОТР 131064 – 131067 установлена защита FLASH-памяти некоторых регионов в диапазоне адресов 0x1000_0000-0x1003_FFFF, программа выполняется из незащищенного адресного пространства FLASH-памяти или любой области ОЗУ.

Последствия

При выполнении чтения защищенной области FLASH-памяти через адресное пространство 0x1004_0000-0x1FFF_FFFF доступ не блокируется.

Рекомендации и способы обхода

Учитывать при разработке ПО.

Использовать биты OTP 131064 – 131067 для защиты областей BOOT OTP, OTP и периферийных блоков криптографии, а также для блокировки интерфейса JTAG и блокировки регистрового доступа к защищенным областям FLASH-памяти.

При выполнении программы из адресного пространства 0x1004_0000-0x1FFF_FFFF доступ к областям ВООТ ОТР, ОТР и периферийных блоков криптографии блокируется.

Ошибки категории 3

Дата документа: 26/06/25

0003 Смещение порога срабатывания детектора напряжения батарейного питания PVDB

Статус

Исправлено в ревизии 2 (исследование).

Описание

Диапазон срабатывания детектора напряжения батарейного питания смещён на 200-300 мВ.

Условия

При задании порога срабатывания с помощью бит PLSB[5:0] регистра PVDCS порог срабатывания будет занижен/завышен на величину порядка 200-300 мВ в зависимости от бита INVB.

Последствия

При установке порога +1.8 В и попытке снизить уровень питания батареи детектор не реагирует и не детектирует уменьшение границы ниже +1.8 В.

Рекомендации и способы обхода

При задании границы с помощью бит PLSB учитывать смещение. Минимально возможное значение PLSB=1.

0004 Отсутствие тримминга HSI генератора после старта программы

Статус

В ревизии 2 в ОТР добавлена информация о тримминге.

Описание

При значении бит hsitrim=0 в регистре BKP_CLK батарейного домена частота внутреннего генератора HSI устанавливается в диапазоне 5-6 МГц.

Условия

После включения питания V_{CCB} батарейного домена биты подстройки частоты hsitrim сбрасываются в нулевое значение и не подстраивают частоту в значение 8 МГц для HSI.

Последствия

В текущей инженерной версии UART загрузчика невозможно установить соединение на скорости 9600 бод. Только на скорости 4800 бод.

Рекомендации и способы обхода

Если при запуске микросхемы в режиме UART-загрузчика не происходит синхронизации с внешним устройством на скорости 9600 бод, то необходимо установить обмен на скорости 4800 бод.

В случае если после установки соединения с внешним устройством на скорости 4800 бод существует необходимость увеличить скорость обмена по UART, то с помощью команды CMD_BAUD нужно установить значение скорости обмена, в два раза превышающее требуемое значение. То есть для обмена на скорости 9600 бод, необходимо передать параметр, соответствующий скорости обмена 19 200.

0007 Накопление случайных данных с помощью ГСЧ с некорректной энтропией

Статус

Исправлено в ревизии 2.

Описание

При аппаратном накоплении данных с помощью ГСЧ не обеспечивается их случайность.

Условия

Всегда.

Последствия

Данные не могут быть использованы в криптографических алгоритмах.

Рекомендации и способы обхода

Сбор данных необходимо производить программным путём. Время сбора данных может быть велико для криптографических алгоритмов. Текст программы доступен по ссылке: https://support.milandr.ru/base/primenenie/programmirovanie-32-razryadnykh-mk/osobennosti-primeneniya-know-how/45435/

0008 Частота генератора HSI составляет несколько кГц при напряжении

Статус

Дата документа: 26/06/25

питания меньше 2,7В

_

Описание

При значении бит hsitrim[5:0]=0 в регистре BKP_CLK батарейного домена и Ucc ≤ 2.7В частота внутреннего генератора HSI составляет несколько кГц.

Условия

При подаче на микросхему напряжения питания из диапазона [2,2; 2,7] В и при отсутствии подстройки частоты HSI-генератора с помощью тримминга (hsitrim[5:0]) частота HSI-генератора составляет величину несколько кГц.

Последствия

Долгий запуск микросхемы при подаче питания.

Рекомендации и способы обхода

В загрузочной программе первыми инструкциями необходимо устанавливать значение hsitrim[5:0] (20h или 40h), которое обеспечит требуемое значение частоты HSI-генератора или же работать только при напряжении питания, превышающем 2,7В. Во втором случае при значении бит hsitrim[5:0]=0 в регистре BKP_CLK батарейного домена частота внутреннего генератора HSI устанавливается в диапазоне 5-6 МГц. Если в загрузочной программе не выполняется операция записи hsitrim[5:0], то необходимо обеспечить наличие бесперебойного батарейного питания и установленное значение hsitrim[5:0] в регистре BKP_CLK.

0011 Ошибка чтения данных FLASH-памяти при смене режима работы FLASH или изменении Delay

Статус

Не исправлено.

Дата документа: 26/06/25

Описание

Однократное ошибочное чтение FLASH-памяти в рабочем режиме (CON = 0) при Delay = 1 после выхода из режима программирования (CON = 1) или после изменения Delay из 0 в 1.

Условия

При Delay = 1 возможно однократное нарушение чтения из FLASH-памяти в рабочем режиме CON = 0 (управление от ядра) в следующих случаях:

- после чтения FLASH-памяти в режиме программирования CON = 1;
- после изменения Delay из 0 в 1.

Если до перехода в режим программирования для чтения 32-битного слова был установлен Delay = 0, но обращений к FLASH-памяти в рабочем режиме между установкой Delay = 0 и переходом в режим программирования не было, ошибочное чтение не устраняется; если обращения к FLASH-памяти в рабочем режиме были, нарушений нет.

Последствия

Происходит чтение некорректных данных/инструкций из FLASH-памяти при CON = 0. Чтение некорректных инструкций может привести к исключительной ситуации ядра.

Рекомендации и способы обхода

1) Чтение FLASH-памяти в режиме программирования CON = 1.

Выбирать режим работы Delay = 0 для чтения при CON = 0 после чтения при CON = 1. Если используется Delay = 1, после чтения FLASH-памяти при CON = 1 необходимо до последующих обращений к FLASH-памяти при CON = 0 осуществить чтение одного 32-битного слова по любому адресу FLASH-памяти для вычитки некорректного слова. Дальнейшие чтения будут осуществляться корректно.

2) Изменение Delay из 0 в 1.

Код программы, изменяющий поле Delay в регистре FLASH_CMD, должен выполняться из области памяти ОЗУ или памяти ОТР. После изменения Delay из 0 в 1 необходимо до последующих обращений к FLASH-памяти при CON = 0 осуществить чтение одного 32-битного слова по любому адресу FLASH-памяти для вычитки некорректного слова. Дальнейшие чтения будут осуществляться корректно.

0013Пропуск канала АЦП при последовательном преобразовании нескольких каналов после выключения АЦП

Статус

Исследование.

Описание

В режиме последовательного преобразования нескольких каналов в результате отключения АЦП (бит Gfg_REG_ADON) при последующем включении АЦП однократно пропускается канал, на котором остановилось преобразование при отключении. Происходит преобразование следующего канала, участвующего в последовательном преобразовании.

Условия

Включение АЦП после отключения АЦП при последовательном преобразовании нескольких каналов.

Последствия

Пропуск преобразования канала АЦП, на котором остановилось преобразование при отключении.

Рекомендации и способы обхода

После отключения АЦП при использовании последовательного преобразования нескольких каналов:

- 1 Отключить переключение каналов (бит Cfg_REG_CHCH).
- 2 Включить переключение каналов только для канала, на котором остановилось преобразование при отключении, и участвующих в преобразовании каналов с бо́льшими номерами (регистр ADC1_CHSEL).

После включения АЦП:

1 Включить переключение для всех требуемых каналов.

0014 Остановка счета IWDG при отсутствии частоты PCLK в процессе перезагрузки значения таймера или обновления значения предделителя

Статус

Исследование.

Дата документа: 26/06/25

Описание

В процессе работы IWDG остановка частоты PCLK блока IWDG после вызова запроса таймера через регистр IWDG KEY перезагрузки значения (записью значения 0хААА) и перед фактическим обновлением значения таймера или после вызова запроса обновления предделителя (запись в регистр IWDG PR) и перед фактическим обновлением значение предделителя блокирует сигнал запроса на обновление значения таймера в активном состоянии. В результате чего до повторного появления частоты PCLK или любого сброса сторожевой таймер IWDG не осуществляет счет и не формирует сброс. Так как в случае запроса перезагрузки IWDG непрерывно перезагружается значением перезагрузки, а в случае запроса обновления предделителя – непрерывно осуществляет обновление предделителя. После появления частоты PCLK и фактического обновления соответствующих значений или после любого сброса IWDG восстанавливает процесс счета.

Условия

Остановка частоты PCLK блока IWDG:

- 1) После вызова запроса перезагрузки значения таймера через регистр IWDG_KEY (записью значения 0хAAAA) и перед фактическим обновлением значения таймера в процессе работы IWDG.
- 2) После вызова запроса обновления предделителя таймера через регистр IWDG_PR и перед фактическим обновлением предделителя в процессе работы IWDG.

Последствия

Отсутствие счета таймера IWDG и формирования им сброса до появления частоты PCLK или любого сброса.

Рекомендации и способы обхода

Реализовать в разрабатываемой системе один или несколько из предложенных способов:

1) Перед вызовом запроса перезагрузки значения таймера и на время сброса флага RVU, а также перед вызовом запроса обновления предделителя и на время

сброса флага PVU, переводить тактирование PCLK (соответствует частоте HCLK) на частоту, которая гарантируется в разрабатываемой системе – например, LSI (поскольку наличие частоты LSI обязательно для работы IWDG, в случае её отсутствия IWDG не сбросит систему при любых обстоятельствах).

- 2) Использовать сторожевые таймеры IWDG и WWDG совместно, при этом время между их перезагрузкой должно быть не менее одного периода частоты LSI и WWDG должен быть запущен до настройки IWDG.
- 3) Использовать внешний сторожевой таймер.

0015 Команда dret не декодируется как illegal instruction при исполнении не в Debug-режиме

Статус

Исследование.

Описание

Неверное декодирование инструкции (команды) dret не в режиме Debug.

Условия

Исполнение ассемблерной инструкции (команды) dret не в режиме Debug.

Последствия

Не декодирование как illegal instruction.

Рекомендации и способы обхода

Не использовать dret в пользовательском коде программы.

0016 Некорректная работа аппаратной точки останова на коде в Debug ROM

Статус

Исследование.

Описание

Останов на коде в Debug ROM не выполняется.

Условия

Установка точки останова на коде в Debug ROM.

Последствия

Возникновение ошибки.

Рекомендации и способы обхода

Не использовать отладку в Debug ROM.

0017 Ошибка в tinfo-регистре модуля отладки

Статус

Исследование.

Дата документа: 26/06/25

Описание

Ошибка в tinfo-регистре, приводящая к проблеме механизма Discovery.

Условия

Применение OpenOCD с включённым механизмом Discovery.

Последствия

Возникновение ошибки.

Рекомендации и способы обхода

- 1. Использовать OpenOCD из основной ветки https://github.com/openocd-org/openocd до версии 0.12.0 включительно.
- 2. Использовать OpenOCD для RISCV https://github.com/riscv/riscv-openocd до версии 2018.12.0;
- 3. Использовать patch1 для OpenOCD для RISCV версии 0.12.0+ dev-03629-g87331a82a. Patch заменяет значение, прочитанное из регистра tinfo, на верное.

Страница 24 из 30

 $^{^{1} \ \}underline{https://support.milandr.ru/upload/iblock/366/1bla1mied7u7vkvie2nuenks9d440kw0/tinfo-patch.zip}$

0018 Команда c.lwsp (если rd == x0) не декодируется как illegal instruction

Статус

Исследование.

Описание

Команда (инструкция) с.lwsp должна декодироваться как illegal instruction.

Условия

Исполнение команды (инструкции) с.lwsp (если rd == x0).

Последствия

Не декодирование illegal instruction.

Рекомендации и способы обхода

Компилятор "С" такие команды не генерирует, поэтому не использовать ассемблерные вставки в "С"-код с такими командами.

0019 Чтение CSR-регистров командами csrrc, csrrsi и csrrci вызывает запись

Статус

Исследование.

Описание

Команды (инструкции) сsrrs, сsrrc, сsrrsi и сsrrci могут быть использованы для выполнения операции чтения CSR-регистров без выполнения операции записи при rs1 = x0 (csrrs, csrrc) или uimm = 0 (csrrsi, csrrci):

```
csrrs rd, csr, x0;csrrc rd, csr, x0;csrrsi rd, csr, 0;csrrci rd, csr, 0.
```

Однако команды csrrc, csrrsi и csrrci при выполнении операции чтения CSR-регистров также ошибочно выполняют операцию записи, что вызывает побочные эффекты записи или вызывает исключение illegal-instruction при обращении к CSR-регистру, доступному только для чтения.

Условия

Выполнение чтения CSR-регистра командой csrrc, csrrsi и csrrci при rs1 = x0 (csrrc) и uimm = 0 (csrrsi, csrrci).

Последствия

Помимо операции чтения также выполняется операция записи, которая не приводит к изменению содержимого регистра (т.к. маска установки/сброса бит равна 0), но вызывает побочные эффекты записи или вызывает исключение illegal-instruction при обращении к CSR-регистру, доступному только для чтения.

Рекомендации и способы обхода

Для выполнения операции чтения CSR-регистров без выполнения операции записи использовать команду csrrs c rs1 = x0 или псевдокоманду csrr (кодируется как csrrs c rs1 = x0):

```
csrrs rd, csr, x0;csrr rd, csr.
```

0020 Состояние вывода JTAG TDO (PA7) не определено после подачи питания

Статус

Исследование.

Дата документа: 26/06/25

Описание

Отладочный ТАР-контроллер интерфейса JTAG при подаче питания сбрасывается по сигналу POR (сброс по питанию) и переходит в состояние Test-Logic-Reset. Если работа отладочного интерфейса JTAG разрешена, то выводы PA[9:6] переходят под управление отладочного TAP-контроллера.

Согласно стандарту JTAG IEEE 1149.1, TAP-контроллер в состоянии Test-Logic-Reset должен перевести вывод TDO в высокоимпедансное состояние. Однако из-за ошибки состояние вывода TDO (PA7) после сброса по питанию не определено – вывод может находиться в одном из следующих состояний: высокоимпедансное, высокий логический уровень, низкий логический уровень. Гарантированный переход вывода TDO (PA7) в высокоимпедансное состояние после сброса по питанию выполняется по спадающему фронту сигнала на входе TCK (PA6).

Условия

Отладочный TAP-контроллер интерфейса JTAG после сброса по питанию, работа отладочного интерфейса JTAG разрешена.

Последствия

Состояние вывода TDO (PA7) не определено: высокоимпедансное, высокий логический уровень, низкий логический уровень.

Рекомендации и способы обхода

Учитывать при разработке.

Для управления выводом TDO (PA7) с помощью контроллера портов ввода-вывода необходимо запретить работу интерфейса JTAG одним из следующих способов:

- сброс бита JTAG_ON в регистре BKP_LDO;
- установка защиты адресного пространства Flash-памяти.

0021 Пропуск импульса SEC_CLK при использовании калибровки RTC_CLK

Статус

Исследование.

Дата документа: 26/06/25

Описание

В блоке RTC для формирования частоты SEC_CLK из частоты RTC_CLK используется делитель, выполненный на счетчике BKP_RTC_PREDIV_S с основанием счета BKP_RTC_PRL. Для калибровки (замедления) RTC_CLK используется счетчик BKP_RTC_PREDIV_A, который на время BKP_RTC_PREDIV_A < RTC_CAL останавливает счет BKP_RTC_PREDIV_S.

Во время работы RTC с калибровкой частоты RTC_CLK (поле RTC_CAL[7:0] != 0 в регистре BKP_RTC_CR) при определенных значениях RTC_CAL и BKP_RTC_PRL периодически происходит одновременное выполнение событий BKP_RTC_PREDIV_S $:= BKP_RTC_PRL$ и BKP_RTC_PREDIV_A := 0, которое приводит к ошибочному сбросу счетчика BKP_RTC_PREDIV_S и пропуску импульса SEC_CLK.

При пропуске импульса SEC_CLK счетчик/календарь (регистры BKP_RTC_TR/DR) и сторожевой таймер BKP_RTC_WUT (при тактировании от SEC_CLK: бит WUCK_SEL[2] == 1 в регистре BKP_RTC_CR) не изменяются и начинают отставать на 1 секунду. Соответствующие флаги в регистре BKP_RTC_CS при пропуске импульса SEC_CLK также не устанавливаются: SECF, ALRAF, ALRBF, WUTF и OWF.

Условия

Установлена калибровка частоты RTC_CLK (поле RTC_CAL[7:0] !=0) и заданы определенные значения RTC_CAL и BKP_RTC_PRL, при которых периодически происходит одновременное выполнение событий BKP_RTC_PREDIV_S := BKP_RTC_PRL и BKP_RTC_PREDIV_A := 0.

Последствия

Счетчик BKP_RTC_PREDIV_S ошибочно сбрасывается, при этом импульс SEC_CLK не формируется. При пропуске импульса SEC_CLK счетчик/календарь и сторожевой таймер BKP_RTC_WUT (при тактировании от SEC_CLK) не изменяются, соответствующие флаги также не устанавливаются: SECF, ALRAF, ALRBF, WUTF и OWF.

Рекомендации и способы обхода

Для калибровки частоты RTC_CLK использовать только ограниченный набор значений

RTC_CAL, полученный с помощью скрипта² для заданного значения BKP_RTC_PRL. Настройка поля RTC_CAL[7:0] и регистра BKP_RTC_PRL должна быть произведена после сброса RTC и до включения RTC, во время работы RTC значения RTC_CAL[7:0] и BKP_RTC_PRL не должны изменяться. В этом случае ошибка проявляться не будет. Пример инициализации RTC:

- включить источник тактирования RTC и выбрать его в поле RTC_SEL[1:0] регистра BKP_RTC_CR;
- дождаться формирования валидной частоты RTC CLK согласно спецификации;
- выключить RTC путем сброса бита RTC_EN в регистре BKP_RTC_CR;
- выполнить сброс RTC путем последовательной установки и сброса бита RTC_RESET в регистре BKP_RTC_CR;
- записать требуемое значение в регистр BKP_RTC_PRL;
- записать допустимое значение в поле RTC_CAL[7:0] регистра BKP_RTC_CR;
- записать 0 в регистр BKP_RTC_PREDIV_S;
- дождаться окончания записи с помощью бита WEC в регистре BKP_RTC_CS;
- выполнить другие настройки RTC;
- включить RTC путем установки бита RTC_EN в регистре BKP_RTC_CR.

Страница 29 из 30

² https://support.milandr.ru/upload/iblock/285/9bliqywbkpifcoptft5dctv327ycqh9s/bkp rtc cal.py

Лист регистрации изменений

Дата	Страница	Статус	ID	Категория	Описание
29.10.20					Документ создан
21.01.21					Добавлено описание ошибки 0004
16.02.21					Добавлено описание ошибки 0005
26.07.21					Добавлено больше информации по ошибке 005 и изменён статус всех ошибок
13.01.22					Изменён статус всех ошибок. Добавлено описание ошибок 0006 и 0007
17.10.22	7		0010	1	Добавлено описание ошибки
	9		0002	2	Исправлен статус ошибки
	11		0006	2	Исправлен статус ошибки
	12		0009	2	Добавлено описание ошибки
	17		8000	3	Добавлено описание ошибки
29.03.23	18		0011	3	Добавлено описание ошибки
03.06.24	13		0012	2	Добавлено описание ошибки
	18		0011	3	Дополнено описание ошибки
	19		0013	3	Добавлено описание ошибки
30.07.24	20		0014	3	Добавлено описание ошибки
17.02.25	22		0015	3	Добавлено описание ошибки
	23		0016	3	Добавлено описание ошибки
	24		0017	3	Добавлено описание ошибки
	25		0018	3	Добавлено описание ошибки
	26		0019	3	Добавлено описание ошибки
	27		0020	3	Добавлено описание ошибки
26.06.25	28		0021	3	Добавлено описание ошибки