

Микросхема приемопередатчика по стандарту RS-485 К5559ИН27У

ТП – технологическая перемычкаГГ – год выпускаНН – неделя выпуска

Основные характеристики микросхемы:

- Напряжение источника питания от 4,5 до 5,5 В;
- Входной импеданс приемника соответствует 1/8 единице нагрузки, что допускает параллельное включение до 256 микросхем;
- Синфазное напряжение шины данных от минус 7 до плюс 12 В;
- Защита от перегрева;
- Защита от короткого замыкания;
- Отказоустойчивый к наличию короткого замыкания и обрыву приемник, не требующий использования внешних отказоустойчивых резисторов;
- Скорость передачи данных до 30 Мбит/с;
- Тепловое сопротивление кристалл-корпус не более 24,3 °C/Вт;
- Масса микросхем не более 0,75 г;
- Температурный диапазон от минус 60 °C до плюс 125 °C

Тип корпуса:

восьмивыводной металлокерамический корпус H02.8-1B.

Общее описание и область применения микросхемы

Микросхемы интегральные К5559ИН27У (далее — микросхемы) предназначены использования в аппаратуре в качестве приемопередатчика по стандарту RS-485 со скоростью передачи данных до $30~{\rm M}$ бит/с.

Содержание

1	Структурная блок-схема микросхемы	3
2	Условное графическое обозначение	3
3	Описание выводов	4
4	Указания по применению и эксплуатации	5
5	Описание функционирования микросхемы	6
	5.1 Режим передатчика. RS-485	6
	5.2 Режим приемника. RS-485	6
	5.3 Микросхема в режиме «Выключено» (Shutdown)	7
	5.4 Максимальная длина шины	7
6	Временные диаграммы	8
7	Типовая схема включения микросхем	. 10
8	Электрические параметры микросхемы	.11
9	Предельно-допустимые характеристики микросхемы	.13
10	Габаритный чертеж микросхемы	. 14
11	Информация для заказа	. 15
	* *	

1 Структурная блок-схема микросхемы

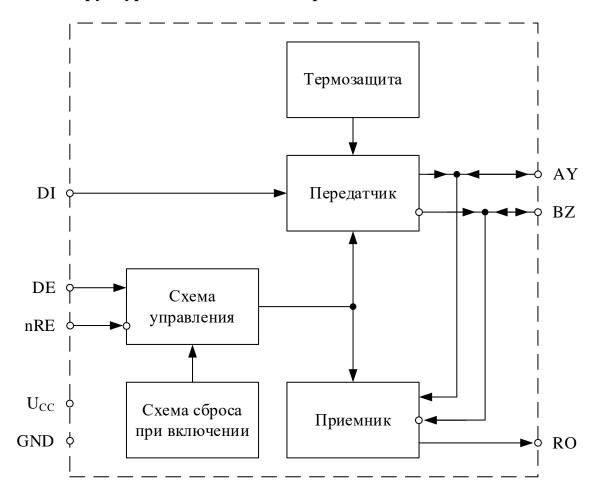


Рисунок 1 – Структурная блок-схема микросхемы

2 Условное графическое обозначение



Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 – Описание выводов микросхемы

Номер	Обозначение	Функциональное назначение вывода	
вывода	вывода		
1	RO	Выход	Выход приемника
		Вход	Включение/выключение приемника:
2	nRE		«0» – приемник включен;
			«1» – приемник выключен
			Включение/выключение передатчика:
3	DE		«0» – передатчик выключен;
			«1» – передатчик включен
4	DI	Вход	Вход передатчика
5	GND	GND	Общий
6	AY	Вход/выход	«Положительный» выход передатчика / вход приемника
7	BZ	Вход/выход	«Отрицательный» выход передатчика / вход приемника
8	U_{CC}	PWR	Питание

4 Указания по применению и эксплуатации

При ремонте аппаратуры и измерении параметров замену микросхем необходимо проводить только при отключенных источниках питания.

Инструмент для пайки (сварки) и монтажа не должен иметь потенциал, превышающий 0,3 В относительно шины общий.

Запрещается подведение каких-либо электрических сигналов (в том числе шин питание и общий) к выходу RO, если он не используется.

Неиспользуемые логические входы nRE, DE и DI необходимо соединить с шиной общий или с шиной питание в соответствии с таблицами истинности.

Технологическая перемычка, расположенная между выводами nRE и DE, электрически соединена с крышкой микросхемы. Технологическую перемычку необходимо соединить с шиной общий.

Технологическую перемычку, расположенную между выводами AY и BZ, не имеющую электрических связей, необходимо оставить неподключенной или соединить с шиной общий.

Конденсаторы, подключаемые к выводу питания, располагать как можно ближе к корпусу микросхемы.

Порядок подачи и снятия напряжении питания и входных сигналов на микросхему:

- подача (включение микросхемы): общий, питание, входные сигналы или одновременно;
 - снятие (выключение микросхемы): одновременно или в обратном порядке.

Допускается подача входных напряжений на входы/выходы AY и BZ при отключенном напряжении питания.

Типовая схема включения микросхем приведена в разделе 7 «Типовая схема включения микросхем».

5 Описание функционирования микросхемы

5.1 Режим передатчика. RS-485

Выходы передатчика имеют ограничение скорости нарастания/спада выходного сигнала для уменьшения уровня электромагнитных помех и отражений при неидеально согласованной шине. Таким образом, обеспечивается стабильная передача информации.

В схеме реализовано два механизма защиты выходов передатчика:

- по максимальному выходному току;
- по рассеиваемой мощности.

Защита активизируются в случаях неправильного использования схемы приемопередатчика, замыкания выходов передатчика на шины питания и/или общий, а также при возникновении конфликтных ситуаций – попытки одновременной передачи данных несколькими приемопередатчикам.

Схема термозащиты срабатывает при температуре кристалла не менее 160 °C и переводит схему передатчика в состояние «Выключено».

Таблица истинности работы передатчика микросхемы приведена в таблице 2

Таблица 2 – Таблица истинности работы передатчика

	Входы	Выходы	
nRE	DE	DI	AY – BZ
X	1	1	≥ U _{O_D}
X	1	0	\leq $ U_{O_D}$
0	0	X	Z
1	0	X	Z. Режим «Выключено»

Примечание – Логический уровень на выводе:

- 1 логическая «1»;
- 0 логический «0»;
- X любое значение: логическая «1» или логический «0»;
- Z высокий импеданс (высокое выходное сопротивление)

5.2 Режим приемника. RS-485

Выход приемника находится в состоянии высокого логического уровня, когда входы приемника замкнуты или не подключены (обрыв), или, когда они подключены к согласованной шине, на которой все подключенные передатчики находятся в состоянии с высоким выходным сопротивлением. Данная особенность достигается смещением входного дифференциального порогового напряжения приемника в диапазон от минус 50 мВ до минус 200 мВ, что не противоречит требованиям стандарта. Благодаря этому не требуется использование внешних отказоустойчивых резисторов.

Таблица истинности работы приемника микросхемы приведена в таблице 3.

Таблица 3 – Таблица истинности работы приемника

	B	КОДЫ	Выходы
nRE	E DE AY – BZ		RO
0	X	≥-50 мВ	1
0	X	≤-200 mB	0
0	X	Обрыв/замыкание	1
1	1	X	Z
1	0	X	Z. Режим «Выключено»

Примечание – Логический уровень на выводе:

- 1 логическая «1»;
- 0 логический «0»;
- X любое значение: логическая «1» или логический «0»;
- Z высокий импеданс (высокое выходное сопротивление)

На входе приемника имеется формирователь входного сигнала, гистерезис которого обеспечивает невосприимчивость приемника к быстро меняющимся входным дифференциальным сигналам, а также сигналам с очень медленными скоростями нарастания/спада.

Приемник микросхемы имеет встроенное смещение, поэтому для задания смещения в линии не требуется использование внешних резисторов.

Входной импеданс приемника RS-485 по стандарту не должен быть меньше 12 кОм, стандартный передатчик способен работать на 32 единицы нагрузки. Входной импеданс микросхемы составляет 1/8 единицы нагрузки (не менее 96 кОм), что позволяет параллельно подключить к шине до 256 эквивалентных приемопередатчиков. Также допустима комбинация на шине микросхем с приемопередатчиками, имеющими другой входной импеданс.

5.3 Микросхема в режиме «Выключено» (Shutdown)

Подача на вход DE логического «0» при подаче на вход nRE логической «1» переводит микросхему в режим «Выключено» (Shutdown) с пониженным током потребления. Микросхема не переходит в этот режим, если время удержания комбинации DE = «0» и nRE = «1» на входах меньше 50 нс. Для гарантированного переключения в режим «Выключено» время удержания комбинации DE = «0» и nRE = «1» на входах лолжно быть не менее 700 нс.

5.4 Максимальная длина шины

Максимальная длина шины по стандарту RS-485 составляет 1200 м. В случае превышения данной длины следует использовать повторители.

6 Временные диаграммы

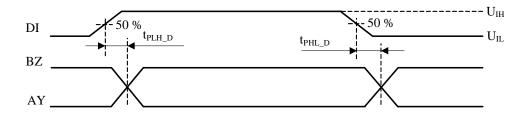
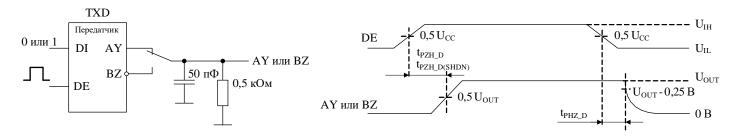
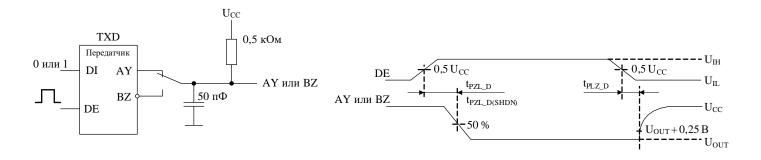




Рисунок 3 — Временная диаграмма при измерении t_{PLH_D} и t_{PHL_D}

a) t_{PZH_D}, t_{PHZ_D} и t_{PZH_D(SHDN)}

б) tpzl_d, tplz_d и tpzl_d(shdn)

Рисунок 4 – Условные схемы включения и временные диаграммы при измерении

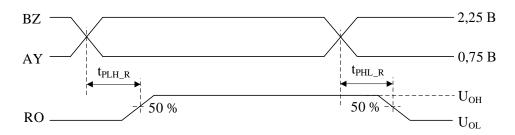
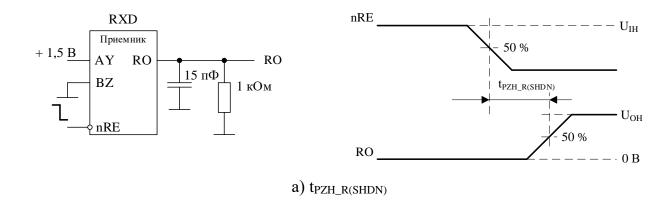



Рисунок 5 — Временная диаграмма при измерении t_{PLH_R} и t_{PHL_R}

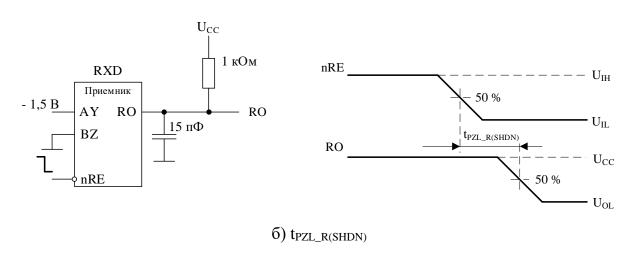
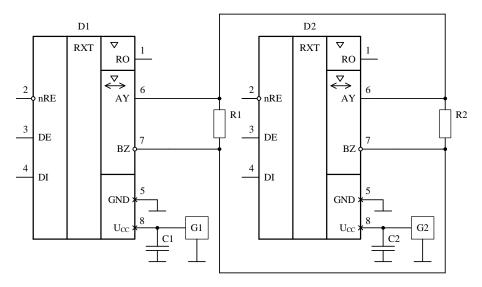



Рисунок 6 – Условные схемы включения и временные диаграммы при измерении

7 Типовая схема включения микросхем

- C1, C2 конденсаторы емкостью не менее 0,1 мк $\Phi \pm 20$ %;
- D1, D2 включаемые микросхемы К5559ИН27У;
- G1, G2 источники напряжения питания 4,5-5,5 В;
- R1, R2 резисторы сопротивлением 120 Ом.

Микросхемы должны использоваться в линии передачи, согласованной с обоих концов резисторами сопротивлением 120 Ом.

Рисунок 7 — Типовая схема включения микросхем без внешнего смещения линии (RS-485)

8 Электрические параметры микросхемы

Таблица 4 – Электрические параметры микросхем при приемке и поставке

	ое иие эа	Норма па	тура °С	
Наименование параметра, единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное дифференциальное напряжение передатчика, В,				25, 125,
при: $4.5 \le U_{CC} \le 5.5 \text{ B}$, при: $R_L = 100 \text{ Om}$;	U_{OD}	2,5	Ucc	- 60
R _L = 54 O _M		2,0		
Изменение выходного дифференциального напряжения передатчика, В	ΔU_{OD}	_	0,2	
Выходное синфазное напряжение передатчика, B, при: $R_L = 100 \; \text{Om};$ $R_L = 54 \; \text{Om}$	Uoc	_	3	
Изменение выходного синфазного напряжения передатчика, B, при: $R_L = 100 \; \text{Om};$ $R_L = 54 \; \text{Om}$	$\Delta U_{ m OC}$	_	0,2	
Выходное напряжение высокого уровня приемника, B, при: $I_{O} = -1 \text{ MA}$	U _{ОН}	$U_{CC} - 0,6$	_	
Выходное напряжение низкого уровня приемника, B, при: $I_O = 1 \text{ мA}$	Uol	_	0,4	
Ток потребления, мА, при: $U_{nRE} = 0$ В, $U_{DE} = U_{CC}$, без нагрузки $U_{nRE} = U_{CC}$, $U_{DE} = U_{CC}$, без нагрузки $U_{nRE} = 0$ В, $U_{DE} = 0$ В	Icc	_	1,8	
Ток потребления в состоянии «Выключено», мкА (приемник и передатчик выключены), при: $U_{nRE} = U_{CC}$, $U_{DE} = 0$ В	I_{SHDN}	-	20	
Входной ток высокого/низкого уровня, мкА, на выводах nRE, DE и DI	$I_{ m IH}$ $I_{ m IL}$	- 1	1	
Ток утечки на входе приемника, мкА	I_{L_R}	- 100	125	
Ток короткого замыкания выхода передатчика, мА, при: $U_{CC} \le U_{AY}(U_{BZ}) \le 12~\mathrm{B}$	I_{OS_D}	40	250	
при: $-7 \text{ B} \le U_{AY}(U_{BZ}) \le 0$		- 250	- 40	
Минимальный ток короткого замыкания передатчика по абсолютной величине, мА при: $U_{CC}-1$ B $\leq U_{AY}(U_{BZ}) \leq 12$ B	I _{OSF_D}	40	-	
при: $-7 \text{ B} \le U_{AY}(U_{BZ}) \le 1 \text{ B}$		_	- 40	

Hayricaya bayyia wamayarma	эе иие эа	Норма параметра		тура °С
Наименование параметра, единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходной ток приемника в состоянии «Выключено», мкА	I_{OZ_R}	- 1	1	25, 125,
Ток короткого замыкания выхода приемника, мА, при: $0 \ B \le U_{RO} < U_{CC}$	I _{OS_R}	- 110	110	-60
Время задержки распространения сигнала передатчика при включении/ выключении, нс, при: $C_L = 50 \text{ n}\Phi, R_L = 54 \text{ Om};$ при: $4.5 \text{ B} \leq U_{CC} \leq 5.5 \text{ B}$	t _{PLH_D}	-	15	
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние высокого/низкого уровня, нс, при: U_{nRE} = 0 В (приемник включен)	t _{PZH_D}	-	60	
Время задержки распространения сигнала передатчика при переходе из состояния высокого/низкого уровня в состояние «Выключено», нс, при: U_{nRE} = 0 В (приемник включен)	t _{PHZ_D}	-	100	
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние высокого/низкого уровня, мкс, при: U_{nRE} = U_{CC} (приемник выключен)	tpzh_d(shdn) tpzl_d(shdn)	-	5,5	
Время задержки распространения сигнала приемника при включении/выключении, нс	t _{PLH_R} t _{PHL_R}	_	60	
Разность задержек распространения сигнала приемника, нс, tplh_R - tphl_R	t _{SKEW_R}	-	30	
Время задержки распространения сигнала приемника при переходе из состояния «Выключено» в состояние высокого/низкого уровня, мкс, при: $U_{DE}=0$ В (передатчик выключен)	t _{PZH_R(SHDN)} t _{PZL_R(SHDN)}	-	5,5	

Микросхемы устойчивы к воздействию статического электричества с потенциалом не менее 2 000 В.

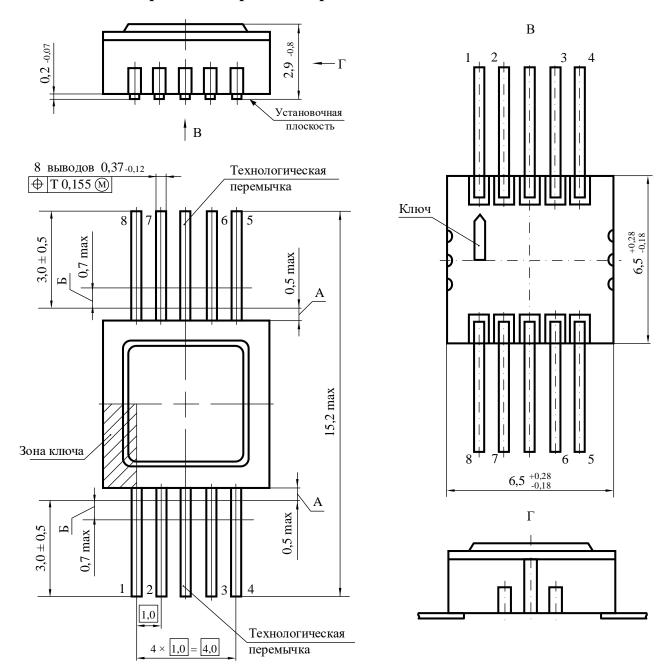

9 Предельно-допустимые характеристики микросхемы

Таблица 5 – Предельно-допустимые и предельные режимы эксплуатации микросхем

	. 0	Норма параметра					
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно- допустимый режим		Предельный режим			
	п 90	не менее	не более	не менее	не более		
Напряжение источника питания, В	Ucc	4,5	5,5	_	6,0		
Входное напряжение низкого уровня, В	$\mathrm{U}_{\mathrm{I\!L}}$	0	0,8	-0,3	_		
Входное напряжение высокого уровня, В	U _{IH}	2,4	Ucc	-	U _{CC} + 0,3		
Входное напряжение приемника, В	U_{I_R}	-7	12	-8	13		
Дифференциальное пороговое напряжение приемника, мВ, при: $-7B < U_{I_R} < 12~B$	U _{ТН}	- 200	- 50	-	_		
Скорость передачи данных, Мбит/с	f_{DR}	_	30	_	_		

Примечание — Не допускается одновременное воздействие нескольких предельных режимов

10 Габаритный чертеж микросхемы

Примечания

- 1 А зона, не контролируемая по толщине и ширине вывода;
- 2~ Б длина вывода, в пределах которой производится контроль смещения плоскостей симметрии выводов от номинального расположения;
 - 3 Форма ключа не регламентируется;
 - 4 Нумерация выводов показана условно.

Рисунок 8 – Габаритный чертеж микросхемы в корпусе Н02.8-1В

11 Информация для заказа

Обозначение	Маркировка	Тип корпуса	Температурный диапазон, °С
К5559ИН27У	34055	H02.8-1B	от – 60 до 125

Условное обозначение микросхем при заказе в договоре на поставку и в конструкторской документации другой продукции должно состоять из:

- наименование изделия микросхема;
- обозначения типа (типономинала);
- обозначения технических условий ТСКЯ.431000.002ТУ;
- обозначения спецификации ТСКЯ.431323.033СП.

Пример обозначения микросхем:

Микросхема К5559ИН27У — ТСКЯ.431000.002ТУ, ТСКЯ.431323.033СП.

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	02.11.2023	1.0.0	Введена впервые	
2	13.11.2023	1.1.0	Таблицы 2, 3 исправлены Таблица 4 – режимы измерения параметров I_{CC} , I_{SHDN} скорректированы	6, 7 11
3	12.03.2024	1.2.0	Раздел «Временные диаграммы» обновлен Таблица 4 — информация о параметрах I_{OS-D} , I_{OSF-D} скорректированы, $U_{O-D} -> U_{OD}$, $\Delta U_{O-D} -> \Delta U_{OD}$	8 11
4	10.06.2024	1.2.1	Добавлено значение параметра Скорость передачи данных в таблице 5	13
5	07.04.2025	1.2.2	Добавлено значение теплового сопротивления, исправлена масса микросхемы; Раздел 11 – добавлена информация о ТУ	1 15