

Микросхема асинхронного статического ОЗУ (512К × 8) бит К1645РУ5У

Основные характеристики микросхемы:

- Информационная емкость 4М (512К × 8) бит;
- Напряжение питания от 3,0 до 5,5 В;
- Время выборки адреса не более 30 нс;
- Ток потребления в режиме хранения не более 5 мА;
- Динамический ток потребления не более 120 мА;
- Масса микросхем не более 3,0 г;
- Температурный диапазон: от минус 60 °C до плюс 125 °C.

ГГ – год выпуска НН – неделя выпуска

Тип корпуса:

- 64-выводной металлокерамический корпус 5134.64-6.

Область применения микросхем

Микросхемы интегральные К1645РУ5У (далее – микросхемы) предназначены для применения в блоках и устройствах памяти вычислительных систем с большими потоками обработки информации.

Содержание

1	Структурная блок-схема	3
2	Условное графическое обозначение	4
3	Описание выводов	5
4	Указания по применению и эксплуатации	7
5	Описание функционирования	8
6	Типовая схема подключения питания	9
7	Временные диаграммы	10
8	Электрические параметры	12
9	Предельно-допустимые характеристики	14
10	Справочные данные	16
11	Типовые зависимости	17
12	Габаритный чертеж	18
13	Информация для заказа	19

1 Структурная блок-схема

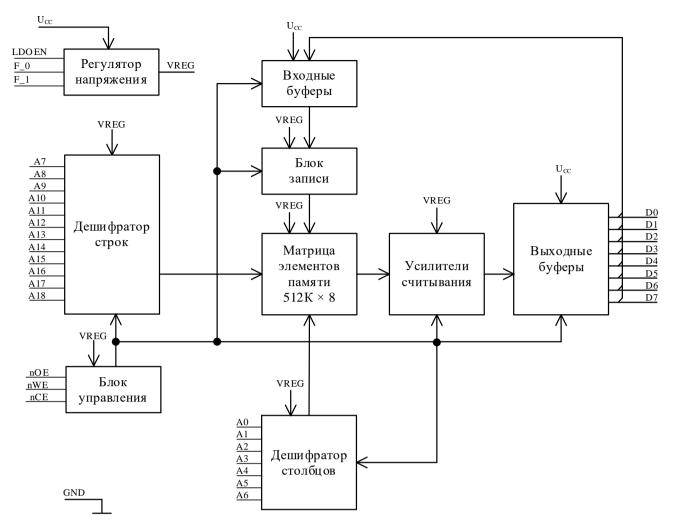


Рисунок 1 – Структурная блок-схема

2 Условное графическое обозначение

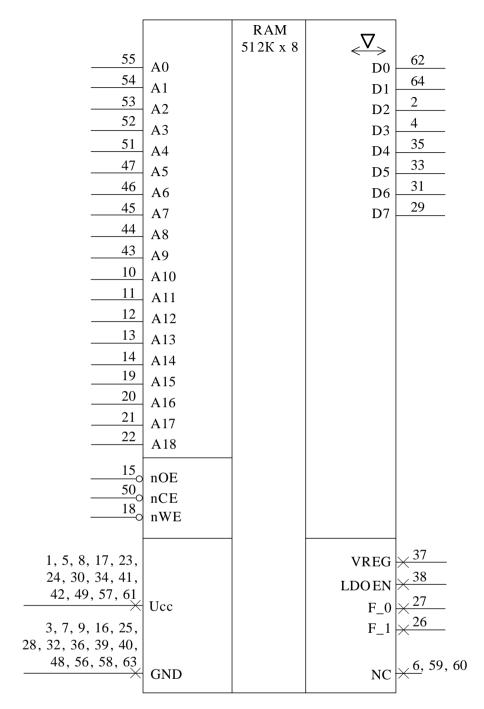


Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 - Описание выводов

Номер	Обозначение	Φ
вывода	вывода	Функциональное назначение вывода
1	U_{CC}	Питание
2	D2	Вход/выход данных
3	GND	Общий
4	D3	Вход/выход данных
5	Ucc	Питание
6	NC	Не используется
7	GND	Общий
8	Ucc	Питание
9	GND	Общий
10	A10	Вход сигнала адреса
11	A11	Вход сигнала адреса
12	A12	Вход сигнала адреса
13	A13	Вход сигнала адреса
14	A14	Вход сигнала адреса
15	nOE	Вход сигнала разрешения выхода данных
16	GND	Общий
17	Ucc	Питание
18	nWE	Вход сигнала разрешения записи
19	A15	Вход сигнала адреса
20	A16	Вход сигнала адреса
21	A17	Вход сигнала адреса
22	A18	Вход сигнала адреса
23	Ucc	Питание
24	Ucc	Питание
25	GND	Общий
26	F_1	Технологический вход с внутренним резистором доопределения до
		питания
27	F_0	Технологический вход с внутренним резистором доопределения до
		питания
28	GND	Общий
29	D7	Вход/выход данных
30	Ucc	Питание
31	D6	Вход/выход данных
32	GND	Общий
33	D5	Вход/выход данных
34	U_{CC}	Питание
35	D4	Вход/выход данных
36	GND	Общий

Номер	Обозначение	
вывода	вывода	Функциональное назначение вывода
37	VREG	Технологический вывод. Не подключать
38	LDOEN	Технологический вход с внутренним резистором доопределения до
		питания
39	GND	Общий
40	GND	Общий
41	U _{CC}	Питание
42	Ucc	Питание
43	A9	Вход сигнала адреса
44	A8	Вход сигнала адреса
45	A7	Вход сигнала адреса
46	A6	Вход сигнала адреса
47	A5	Вход сигнала адреса
48	GND	Общий
49	U _{CC}	Питание
50	nCE	Вход сигнала разрешения выборки микросхемы
51	A4	Вход сигнала адреса
52	A3	Вход сигнала адреса
53	A2	Вход сигнала адреса
54	A1	Вход сигнала адреса
55	A0	Вход сигнала адреса
56	GND	Общий
57	Ucc	Питание
58	GND	Общий
59	NC	Не используется
60	NC	Не используется
61	U _{CC}	Питание
62	D0	Вход/выход данных
63	GND	Общий
64	D1	Вход/выход данных

4 Указания по применению и эксплуатации

При ремонте аппаратуры и измерении параметров микросхем замену микросхем необходимо проводить только при отключенных источниках питания.

Инструмент для пайки (сварки) и монтажа не должен иметь потенциал, превышающий 0,3 В относительно шины общий.

Неиспользуемые входы микросхемы должны быть подключены к шине питания или к шине общий.

Запрещается подключать к шине общий технологические входы F_1 (вывод 26), F_0 (вывод 27), LDOEN (вывод 38).

Запрещается подведение каких-либо электрических сигналов, в том числе шин питание, общий, к технологическому входу VREG (вывод 37).

Выводы 6, 59 и 60, не используемые согласно таблице 1, допускается подключать к напряжению питания, к шине общий или оставлять неподключенными.

Рекомендуемая длительность фронта подачи напряжения питания на микросхему не менее 10 мкс. Время до начала первого обращения к памяти не менее 100 мкс от момента достижения напряжением питания 70 % значения.

Максимально допустимое значение времени нарастания/спада входных сигналов не более 100 нс, при этом динамические параметры не гарантируются. Для обеспечения максимального быстродействия микросхемы время нарастания/спада входных сигналов должно быть не более 3 нс.

Порядок подачи и снятия напряжения питания и входных сигналов на микросхему должен быть следующим:

- подача (включение микросхем) общий, питание, входные сигналы или одновременно;
 - снятие (выключение микросхем) в обратном порядке или одновременно.

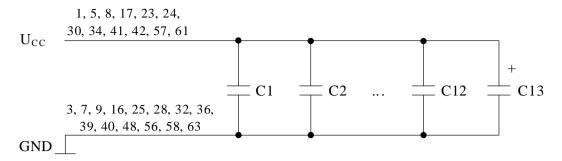
5 Описание функционирования

Микросхемы представляют собой статическое оперативное запоминающее устройство (СОЗУ) с произвольной выборкой с информационной емкостью 4М и организацией 512К слов по 8 бит. В качестве запоминающего элемента использована шеститранзисторная ячейка памяти. Питание матрицы элементов памяти осуществляется с помощью линейного регулятора напряжения 1,8 В.

Типовые режимы работы СОЗУ обеспечиваются управляющими сигналами разрешения выборки, разрешения выхода данных и разрешения записи на входах nCE, nOE, nWE микросхемы, в соответствии с таблицей истинности (таблица 2) и временными диаграммами (рисунки 4-8). Выводы A0-A18 являются адресными входами, выводы данных D0-D7 являются двунаправленными, их состояние зависит от логических уровней управляющих сигналов.

Входы			Выходы	- Режим	
nOE	nWE	nCE	D0-D7	ГЕЖИМ	
X	X	Н	Состояние высокого импеданса	Хранение данных	
L	Н	L	Выходные данные	Считывание данных	
X	L	L	Входные данные	Запись данных	
Н	Н	L	Состояние высокого импеданса	Запрет выхода данных при считывании	

Примечание – Обозначения в таблице:


Н – состояние высокого уровня;

L – состояние низкого уровня;

Х – состояние высокого или низкого уровня

При напряжении высокого уровня на входе nCE микросхема находится в режиме хранения и ее состояние не зависит от других управляющих сигналов, сигналов адреса и сигналов данных. Выходы микросхемы при этом находятся в состоянии высокого импеданса. В этом режиме микросхема потребляет минимальную мощность. Операции записи и считывания возможны при активном сигнале nCE (напряжении низкого уровня на входе nCE). При напряжении низкого уровня на входе nWE происходит запись информации в определенные ячейки памяти в соответствии с сигналами на входах данных D0 - D7 и адресным кодом на входах адреса A0 - A18. По каждому адресному коду происходит выборка восьми ячеек памяти, по одной в каждом разряде, и записывается восемь бит входной информации, по одному биту в каждую ячейку. Напряжение низкого уровня на входе nWE переводит выходы микросхемы в состояние высокого импеданса независимо от уровня сигнала на входе nOE. Считывание происходит при напряжении высокого уровня на входе nWE, информация появляется на выходах микросхемы в соответствии с адресным кодом на входах адреса и наличии напряжения низкого уровня на входе nOE. Сигнал nOE управляет выходными буферами, обеспечивая их переход в состояние высокого импеданса (при напряжении высокого уровня на входе nOE) независимо от состояния других управляющих сигналов.

6 Типовая схема подключения питания

C1 - C12 – конденсаторы емкостью 0,1 мк Φ ;

С13 – конденсатор емкостью 10 мкФ.

Конденсаторы С1 – С12 располагаются как можно ближе к каждому выводу питания.

Рисунок 3 – Типовая схема подключения питания

7 Временные диаграммы

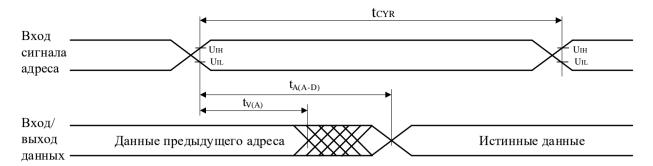


Рисунок 4 — Временная диаграмма цикла чтения 1 при: $U_{nCE} = U_{IL}, \ U_{nWE} = U_{IH}, \ U_{nOE} = U_{IL}$

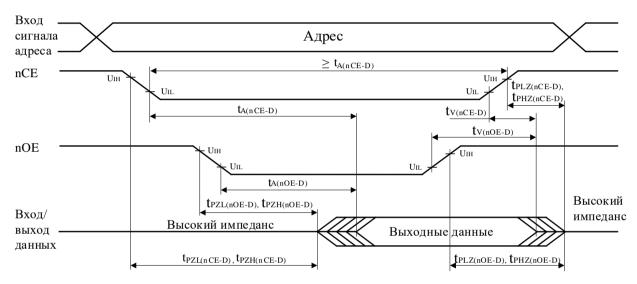


Рисунок 5 — Временная диаграмма цикла чтения 2 при $U_{nWE} \! = \! U_{IH}$

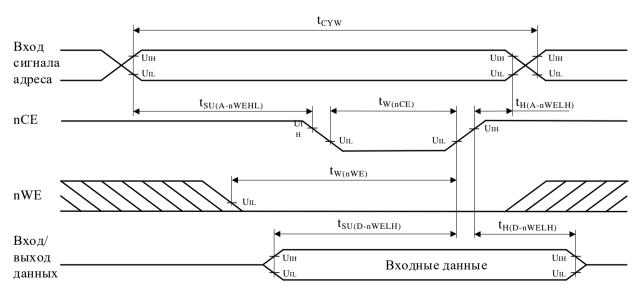


Рисунок 6 — Временная диаграмма цикла записи 1. Управление по nCE, при $U_{nOE} = U_{IH}$

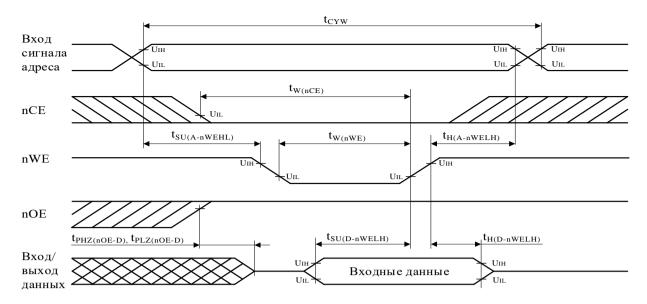


Рисунок 7 — Временная диаграмма цикла записи 2. Управление по nWE, при $U_{nOE}=U_{IH}$ на протяжении цикла записи

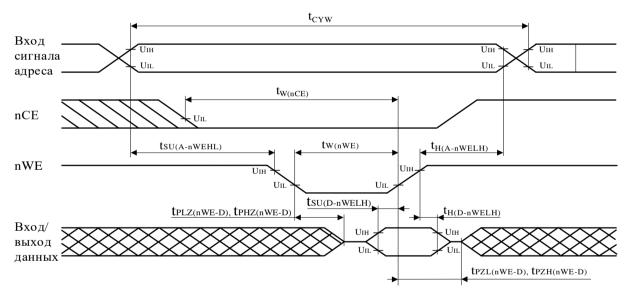


Рисунок 8 — Временная диаграмма цикла записи 3. Управление по nWE, при $U_{nOE}=U_{IL}$ на протяжении цикла записи

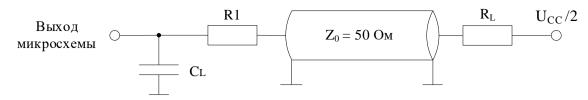

8 Электрические параметры

Таблица 3 – Электрические параметры микросхем при приемке и поставке

Наименование параметра, единица измерения,	Буквенное обозначение параметра	Норма параметра		Температура среды, °С
режим измерения	Букве обозна парал	не менее	не более	Темперал среды,
Выходное напряжение высокого уровня, В	U _{OH}	2,4	_	25,
Выходное напряжение низкого уровня, В	UoL	_	0,4	125, - 60
Ток утечки высокого уровня на входе, мкА	${ m I}_{ m ILH}$	-1	1	25, 125
		-5	5	- 60
Ток утечки низкого уровня на входе, мкА	$ m I_{ILL}$	- 1	1	25, 125
		-5	5	- 60
Выходной ток высокого уровня в состоянии «Выключено», мкА	Іоzн	-1	1	25, 125
«Выключено», мкА		-5	5	- 60
Выходной ток низкого уровня в состоянии	I _{OZL}	- 1	1	25, 125
«Выключено», мкА		- 5	5	- 60
Динамический ток потребления, мА,				25,
при U _{CC} = (3,0 – 3,6) В	I _{OCC}	_	90	125,
при $U_{CC} = (4,5-5,5)$ В			120	- 60
Ток потребления в режиме хранения, мА, ТТЛ уровни на входах при $U_{CC} = (3,0-3,6)$ В при $U_{CC} = (4,5-5,5)$ В	I _{CCS1}	_	10	
Ток потребления в режиме хранения, мА, КМОП уровни на входах	I _{CCS2}	_	5	
Время выборки адреса, нс при $U_{CC} = (3,0-3,6)$ В при $U_{CC} = (4,5-5,5)$ В	t _{A(A-D)} *	_	30 20	
Время выборки по сигналу nCE, нс при $U_{CC} = (3,0-3,6)$ В при $U_{CC} = (4,5-5,5)$ В	tA(nCE-D)*	_	30 22	
Время выборки по сигналу пОЕ, нс при U _{CC} = (3,0 – 3,6) В при U _{CC} = (4,5 – 5,5) В	t _{A(nOE-D)} *	_	15 10	

^{*} Схема подключения выходов микросхемы при измерении параметра приведена на рисунке 9

Микросхемы устойчивы к воздействию статического электричества с потенциалом не менее 2 000 В.

 C_L – конденсатор емкостью 5 пФ;

R1 – масштабирующий резистор сопротивлением 200 Ом;

R_L – резистор сопротивлением 50 Ом

Рисунок 9 — Схема подключения выходов микросхемы при измерении динамических параметров и проведении функционального контроля

9 Предельно-допустимые характеристики

Таблица 4 – Предельно-допустимые и предельные режимы эксплуатации микросхем

	о Норма параметра					
	Буквенное	Предельно- Предельны			ельный	
Наименование параметра, единица	зен	допустимый режим		•	жим	
измерения)))))	не	не	не	не	
)0	менее	более	менее	более	
Напряжение питания, В	Ucc	3,0	5,5	_	6,0	
Входное напряжение высокого уровня, В	U _{IH}	2,4	Ucc	_	U _{CC} +0,3 ¹⁾	
Входное напряжение низкого уровня, В	U _{IL}	0	0,8	$-0,3^{1)}$	_	
Выходной ток высокого уровня, мА	I_{OH}	-4	_	-8	_	
Выходной ток низкого уровня, мА	I_{OL}	_	4	_	8	
Напряжение высокого уровня,						
прикладываемое к выходу в состоянии	U_{OHZ}	_	U_{CC}	_	U _{CC} +0,3	
«Выключено», В						
Напряжение низкого уровня,						
прикладываемое к выходу в состоянии	U_{OLZ}	0	_	-0,3	_	
«Выключено», В						
Время цикла считывания информации, нс,			_	_		
при U _{CC} = (3,0 – 3,6) В	t_{CYR}	30			_	
при $U_{CC} = (4,5-5,5)$ В		20				
Время цикла записи информации, нс,						
при U _{CC} = (3,0 – 3,6) В	tcyw	30	_	_	_	
при $U_{CC} = (4,5-5,5)$ В		20				
Время установления сигнала адреса						
относительно спада сигнала разрешения	t _{SU(A-nWEHL)}	0	_	_	_	
записи nWE, нс						
Время установления входных сигналов						
данных относительно фронта сигнала						
разрешения записи nWE, нс,	t _{SU(D-nWELH)}		_	_	_	
при Ucc = (3,0 – 3,6) В		25				
при $U_{CC} = (4,5-5,5)$ В		15				
Время удержания сигнала адреса						
относительно фронта сигнала разрешения						
записи nWE,нс,	$t_{H(A-nWELH)}$	0	_	_	_	
при U _{CC} = (3,0 – 3,6) В						
при $U_{CC} = (4,5-5,5)$ В						
Время удержания сигнала входных данных						
относительно фронта сигнала разрешения	$t_{H(D-nWELH)}$	0	_	_		
записи nWE, нс,					_	
при U _{CC} = (3,0 – 3,6) В	_					
при $U_{CC} = (4,5-5,5)$ В						

	, <u>e</u>	Норма параметра			
Наименование параметра, единица	ное	Предельно-		Преде	ельный
измерения	Буквенное	допустим	допустимый режим		жим
измерения	Бук	не	не	не	не
	0]	менее	более	менее	более
Длительность сигнала выборки nCE при					
записи, нс,	tw(nCE)				
при $U_{CC} = (3,0-3,6)$ В		25	_	_	_
при $U_{CC} = (4,5-5,5)$ В		20	_		
Длительность сигнала разрешения записи					
nWE, HC,	4				
при $U_{CC} = (3.0 - 3.6) B$	t _{W(nWE)}	25	_	_	_
при $U_{CC} = (4,5-5,5)$ В		15	_		
Емкость нагрузки, пФ	C_{L}	_	$30^{2)}$	_	_

 $^{^{1)}}$ Допускается наличие на любых выводах импульсных напряжений низкого и высокого уровня длительностью $t_W \leq 10$ мкс и амплитудой $U_{LA} \geq -$ 0,5 B, $U_{HA} \leq U_{CC} +$ 0,5 B и со скважностью $Q \geq 2$;

 Π р и м е ч а н и е — Не допускается одновременное воздействие двух и более предельных режимов

²⁾ Допускается $C_L \le 500 \text{ п}\Phi$ без гарантии динамических параметров.

10 Справочные данные

Значение собственной резонансной частоты не менее 2 000 Гц.

Среднее значение входной емкости $C_I = 13.5 \text{ п} \Phi$ при $f = 50 \text{ к} \Gamma$ ц.

Среднее значение емкости входа/выхода $C_{I/O} = 16,0$ пФ при f = 50 кГц.

Предельная температура p-n перехода кристалла 150 °C.

Для обеспечения максимального быстродействия микросхемы длительность фронтов входных сигналов должна быть не более 3 нс.

Таблица 5 – Справочные параметры микросхемы

Наименование параметра, единица измерения,	Буквенное обозначение параметра	Норма параметра		Гемпература среды (корпуса), °С
режим измерения	Букве 0603нг парал	не менее	не более	Температу среды (корпуса),
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nCE, нс	t _{PLZ(nCE-D)}	_	10	25, 125, – 60
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nCE, нс	t _{PZL(nCE-D)} t _{PZH(nCE-D)}	3	_	
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nOE, нс	tPLZ(nOE-D) tPHZ(nOE-D)	_	5	
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого высокого (высокого) уровня по сигналу пОЕ, нс	tpzl(nOE-D) tpzh(nOE-D)	0	_	
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nWE, нс	t _{PLZ(nWE-D)} t _{PHZ(nWE-D)}	_	10	
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nWE, нс	t _{PZL(nWE-D)} t _{PZH(nWE-D)}	2	_	
Время сохранения выходных данных после изменения сигнала адреса, нс	t _{V(A-D)}	5	_	
Время сохранения выходных данных после фронта сигнала nCE, нс	t _{V(nCE-D)}	2	_	
Время сохранения выходных данных после фронта сигнала nOE, нс	t _{V(nOE-D)}	1	_	

11 Типовые зависимости

Раздел находится в разработке.

12 Габаритный чертеж

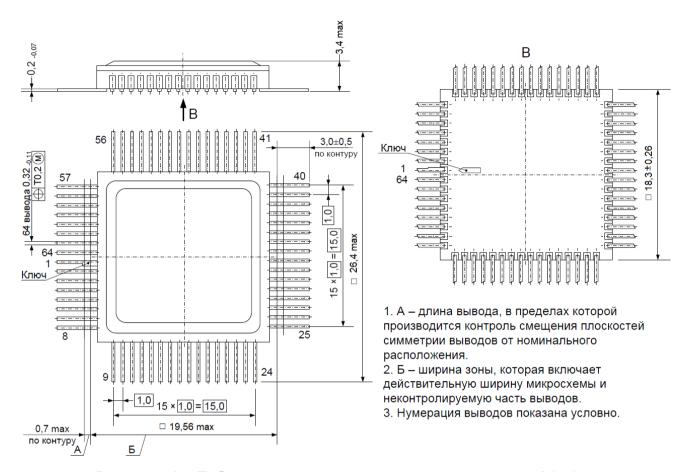


Рисунок 10 – Габаритный чертеж микросхемы в корпусе 5134.64-6

13 Информация для заказа

Обозначение Маркировка		а Тип корпуса	Температурный диапазон, °С
К1645РУ5У	22025	5134.64-6	от – 60 до 125

Условное обозначение микросхем при заказе в договоре на поставку и в конструкторской документации другой продукции должно состоять из:

- наименование изделия микросхема;
- обозначения типа (типономинала);
- обозначения технических условий ТСКЯ.431000.002ТУ;
- обозначения спецификации ТСКЯ.431223.022СП.

Пример обозначения микросхем:

Микросхема К1645РУ5У – ТСКЯ.431000.002ТУ, ТСКЯ.431223.022СП.

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	13.12.2023	1.0.0	Введена впервые	
2	13.03.2024	1.1.0	Изменена норма параметра t _{A(nCE-D)} в таблице 3	12
3	05.06.2024	1.2.0	Рисунок 1 обновлен	3
			Раздел 5 – описание скорректировано	8
			Рисунки 3 – 8 обновлены	9-11
4	30.01.2025	1.2.1	Исправлено значение массы микросхемы.	1
			Раздел 13 – добавлена информация о ТУ	19