

КОМПЛЕКТ ОТЛАДОЧНЫЙ ДЛЯ МИКРОСХЕМЫ 1986ВЕ1Т

Паспорт ТСКЯ.468998.003ПС

Содержание

1	Основные сведения об изделии и технические данные	3
2	Комплектность	5
3	Сроки эксплуатации, хранения и гарантии изготовителя	
	(поставщика)	6
4	Свидетельство об упаковывании	7
5	Свидетельство о приемке	7
6	Сведения о рекламациях	8
7	Указания по эксплуатации	9

1 Основные сведения об изделии и технические данные

1.1 Основные сведения об изделии

Комплект отладочный для микросхемы 1986BE1T (далее изделие) предназначен для ознакомления с работой микросхемы 1986BE1T (далее микросхема), а также для разработки собственных проектов на её основе.

Внешний вид изделия приведен на рисунке 1.

Рисунок 1 - Внешний вид изделия

Модуль отладочный для микросхемы 1986BE1T TCKЯ.469575.001, входящий в состав изделия, изображен на рисунке 2.

Рисунок 2 - Модуль отладочный ТСКЯ.469575.001*

- 1.2 Основные технические данные:
- напряжение питания 5 В;
- возможность подключения к ПК через интерфейс RS-232;
- реализация интерфейсов RS-232, Ethernet, USB, SPI, CAN, SIR, ГОСТ Р 52070-2003, ГОСТ Р 18977-79.
- 1.3 Условия эксплуатации должны удовлетворять следующим значениям климатических факторов:
 - температура окружающей среды (25 ± 10) °C;
 - относительная влажность воздуха от 45 до 80 %;
 - атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.).

^{*} Внешний вид модуля отладочного может отличаться

2 Комплектность

Состав изделия должен соответствовать таблице 1.

Таблица 1

Обозначение	Наименование	Количество	Приме- чание
ТСКЯ.469575.001	Модуль отладочный для	1	_
1010111000101001	микросхемы 1986ВЕ1Т		
	Микросхема К1986ВЕ1ТК		
ТСКЯ.431296.008СП	в спутнике носителе	2	-
	CH132/0,625-1-A		
-	Кабель RS-232 9F-9F 1,8м	1	-
-	Кабель USB (п-п) тип А-В 1,5 м	1	-
_	Патч-корд UTP RJ-45	1	_
_	категория 5е 1,5 м	'	_
-	Блок питания 5 В	1	1
-	Компакт-диск	1	-
-	Паспорт ТСКЯ.468998.003ПС	1	-
-	Батарея CR2032	1	2
_	Упаковка ТСКЯ.305646.004	1	_
-	(тип 1)	ı	-
-	Джамперы (перемычки)	111	3

Примечания

- 1 Допускается замена без уведомления заказчика.
- 2 Поставляется по требованию заказчика.
- 3 Входят в состав модуля отладочного для микросхемы 1986ВЕ1Т: одна часть перемычек установлена на модуле отладочном, другая поставляется упакованными в Zip-lock пакет.

Для работы с изделием дополнительно могут поставляться следующие модули, адаптеры и программное обеспечение:

- модуль Ethernet (на базе 5600ВГ1У);
- модуль внешней памяти ОЗУ (на базе 1645РУ4У);
- модуль внешней памяти Flash (на базе 1636PP2);
- USB JTAG адаптер JEM-ARM-V2 (Phyton);
- USB JTAG адаптер ULINK2 (Keil);
- USB JTAG адаптер J-LINK (Segger);
- среда разработки CodeMaster-ARM (Phyton);
- среда разработки MDK-Cortex-M (Keil);
- среда разработки IAR Embedded Workbench (IAR Systems).

3 Сроки эксплуатации, хранения и гарантии изготовителя (поставщика)

Гарантийный срок эксплуатации, в пределах гарантийного срока хранения, не менее 6 месяцев.

Гарантийный срок хранения комплекта отладочного с момента отгрузки – 12 месяцев.

Предприятие — изготовитель (поставщик) гарантирует качество и соответствие изделия всем требованиям конструкторской документации при соблюдении потребителем правил эксплуатации, транспортирования и хранения, установленных конструкторской (эксплуатационной) документацией, в течение гарантийного срока.

4 Свидетельство об упаковывании

Комплект отладочный для микросхемы 1986ВЕ1Т ТСКЯ.468998.003

√ º								
				(заводо	ской номе	:p)		
упак предусм	кован отреннь	АО ым в де	«ПКК ействуюі		андр» ническої	согла й докуг		требованиям, ции.
(дол	жность)			(личная п	одпись)	-	(расші	ифровка подписи)
(год, ме	сяц, числ	0)	<u> </u>					
5 C	Свидете	льств	о о при	емке				
			•		мы 1986	6BE1T	ТСКЯ.	468998.003
Nº								
				(заводск	ой номер)		
	твенны	х (нац	иональн	ых) стаі	ндартов	, дейс		требованиями ей технической
					СКК			
МП								
		יאת)	чная подп	ись)		(p	асшифр	овка подписи)
		/	иесяц, чис		_			

6 Сведения о рекламациях

Изделие подлежит рекламации качества и комплектности в период гарантийных обязательств, независимо от того, в какой составной части изделия обнаружено несоответствие качества и комплектности, упаковки, консервации и маркировки, условиям договора, а также сопроводительных документов, удостоверяющих качество и комплектность проверяемой продукции при приеме и подготовке ее к монтажу, в процессе монтажа, наладки, испытаний, эксплуатации, хранения и транспортирования.

Рекламации предъявляют в форме рекламационного акта см. таблицу 3.

Уведомление о вызове представителя поставщика направлять по адресу: АО «ПКК Миландр», 124498, г. Москва, Зеленоград, Георгиевский проспект, дом 5. Факс: 8 (495) 981-54-36

Дополнительно запрос должен быть продублирован на электронный адрес: support@milandr.ru.

Таблица 3

Наименование и обозначение изделия (составной части изделия)	Дата и номер реклама- ционного акта	Краткое содержание рекламации	Дата вос- становления исправности изделия	Дата и номер акта исследо- вания	Должность, фамилия и подпись ответственного лица

7 Указания по эксплуатации

Перед началом работы внимательно ознакомьтесь с данным разделом.

7.1 Элементы управления и коммутации, установленные на модуле отладочном для микросхемы 1986ВЕ1Т (далее – модуль отладочный), показаны на рисунке 3, разъемы для установки перемычек показаны на рисунке 4, их описание содержится в таблице 4.

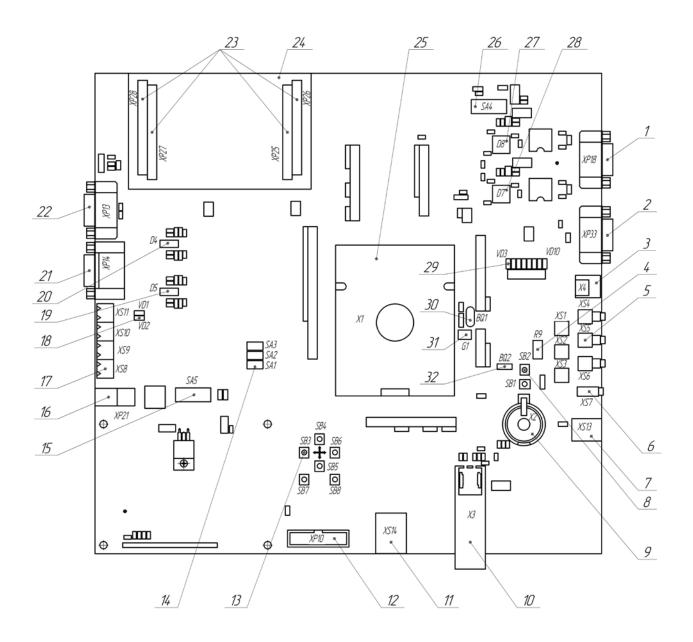


Рисунок 3 - Расположение элементов управления и коммутации на модуле отладочном для микросхемы 1986ВЕ1Т

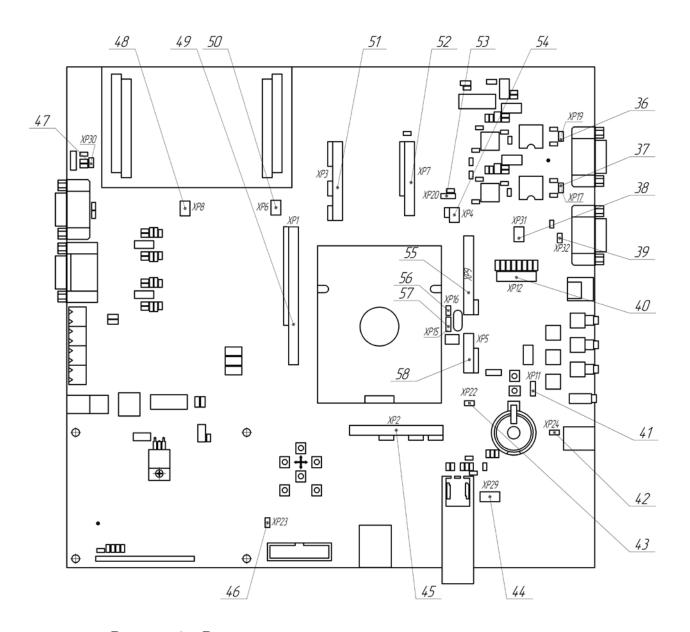


Рисунок 4 – Расположение разъемов для установки перемычек

Таблица 4

Обозначение	Описание	Позиция	Рисунок
BQ1	Кварцевый резонатор	30	3
BQ2	пьарцевый резонатор	32	3
D4	M	20	3
D5	Микросхема HI-8596PSI	19	3
D7	Микросхема 5559ИН13У	28	3
D8	АЕЯР.431230.591ТУ	27	3
G1	Кварцевый генератор	31	3
R9	Подстроечный резистор	4	3
SA1-SA3		14	3
SA4	Переключатель	26	3
SA5	•	15	3
SB1-SB2	16	8	3
SB3-SB8	Кнопки клавиатуры	13	3
VD1-VD2	0	18	3
VD3-VD10	Светодиодная индикация	29	3
X1	Контактирующее устройство для микросхемы	25	3
X2	Батарейный отсек	9	3
Х3	Разъем для работы с интерфейсом Fiber Optic Ethernet	10	3
X4	Подключение карты памяти micro-SD по интерфейсу SPI	3	3
XP1		49	4
XP2		45	4
XP3		51	4
XP4	Post on the vetallopus	54	4
XP5	Разъем для установки конфигурационных перемычек	58	4
XP6	конфигурационных перемычек	50	4
XP7		52	4
XP8		48	4
XP9		55	4
XP10	Подключение средств отладки и программирования	12	3
XP11	Разъем для установки	41	4
XP12	конфигурационных перемычек	40	4
XP13	Разъем для работы с интерфейсом RS-232 и интерфейсом SIR	22	3
XP14	Разъем для работы с интерфейсом по ГОСТ 18977-79	21	3
XP15		57	4
XP16	Разъем для установки	56	4
XP17	конфигурационных перемычек	37	4
XP18	Разъем для работы с интерфейсом по ГОСТ Р 52070-2003	1	3

Продолжение таблицы 4

Обозначение	Описание	Позиция	Рисунок
XP19	Разъем для установки	36	4
XP20	конфигурационных перемычек	53	4
XP21	Подключение блока питания 5 В	16	3
XP22	_	43	4
XP23	Разъем для установки	46	4
XP24	конфигурационных перемычек	42	4
XP25-XP28	Универсальный разъем для подключения внешних модулей	23	3
XP29		44	4
XP30	Разъем для установки	47	4
XP31	конфигурационных перемычек	38	4
XP32		39	4
XP33	Разъем для работы с интерфейсом CAN	2	3
XS1-XS6	Аналоговые SMA разъемы	5	3
XS7	Звуковой выход	6	3
XS8-XS11	Таймер 4	17	3
XS13	Разъем для работы с интерфейсом USB	7	3
XS14	Разъем для работы с интерфейсом Ethernet	11	3
-	Жидкокристаллический модуль	24	3

- 7.2 Подробное описание элементов, входящих в состав изделия
- 7.2.1 Разъемы, контактирующие устройства, батарейный отсек
- 7.2.1.1 В контактирующее устройство X1 микросхему установить в спутник носитель CH132/0,625-1-A.
- 7.2.1.2 Разъем XP10 предназначен для подключения средств отладки и программирования.

Назначение выводов разъема ХР10 представлено в таблице 5.

Таблица 5

Номер вывода ХР10	Назначение
1, 2	+3,3 B
3	nTRST
4, 6, 8, 10, 12, 14, 16, 18, 20	GND
5	TDI
7	TMS
9	TCK
11, 17, 19	Доопределение до GND
13	TDO
15	RESET

7.2.1.3 Батарейный отсек X2 предназначен для подачи автономного питания +3В от батарейки типа CR-2032 для работы периферийного блока «Батарейный домен и часы реального времени» микросхемы при отсутствии основного питания Ucc.

7.2.1.4 Конфигурационные перемычки специального назначения

Если на разъеме XP2 (рисунок 6) перемычка установлена в позицию XP2(7) в положение «1», то микросхема начинает выполнять программу из внутренней Flash-памяти, если в положение «0», то микросхема начинает выполнять программу из внешней памяти. В большинстве случаев перемычка должна быть установлена в положение «1»;

На разъеме XP22 «BUCC» перемычка всегда установлена и предназначена для сброса часов реального времени.

7.2.2 Разъемы для установки конфигурационных перемычек (джамперов) Разъемы для установки перемычек, использующихся для настройки изделия, подробно показаны на рисунках 5 – 18.

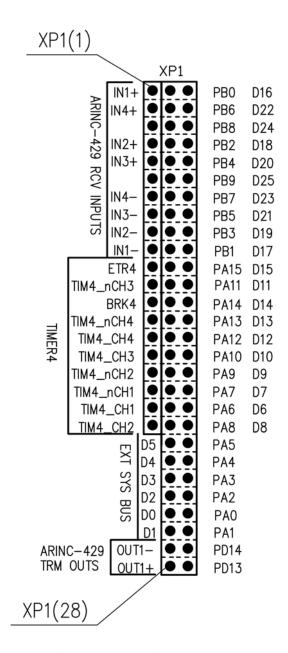


Рисунок 5 - Разъем XP1

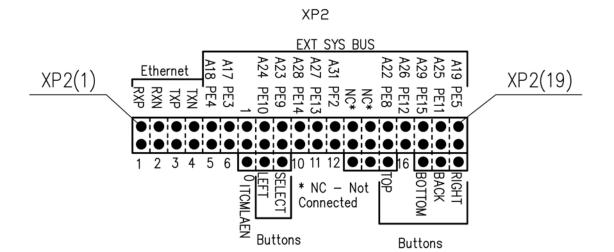


Рисунок 6 – Разъем ХР2

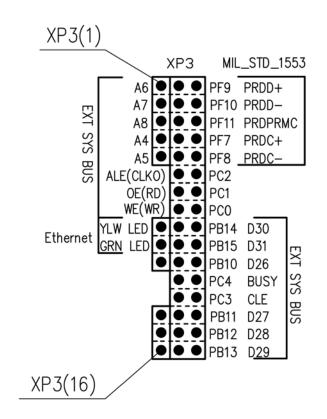


Рисунок 7 – Разъем ХРЗ

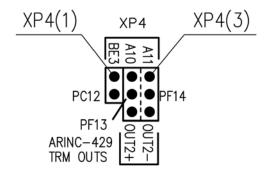


Рисунок 8 - Разъем ХР4

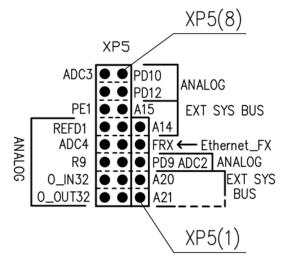


Рисунок 9 – Разъем ХР5

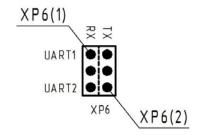


Рисунок 10 – Разъем ХР6

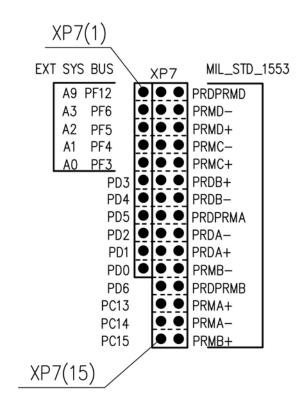


Рисунок 11 – Разъем ХР7

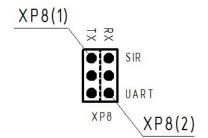


Рисунок 12 – Разъем ХР8

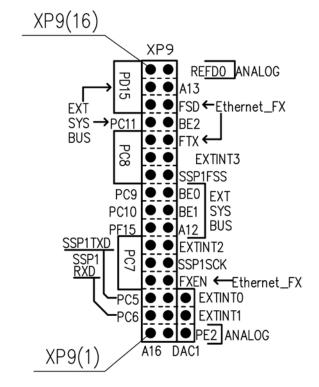
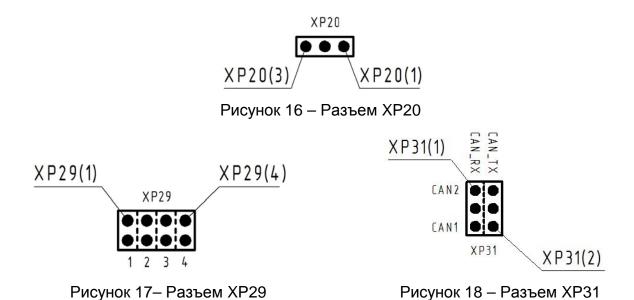



Рисунок 13 – Разъем ХР9

Рисунок 14 – Разъем ХР11

Рисунок 15 – Разъем ХР15

18

7.2.3 Резонаторы и генераторы

- 7.2.3.1 Кварцевый резонатор BQ2 (32768 Гц) предназначен для формирования тактовой частоты периферийного блока «Батарейный домен и часы реального времени» микросхемы. Кварцевый резонатор BQ2 подключить к микросхеме с помощью установки на разъеме XP5 двух перемычек: позиция XP5(1) в положение «O_OUT32», позиция XP5(2) в положение «O_IN32» (в соответствии с рисунком 9).
- 7.2.3.2 Кварцевый BQ1 (8 резонатор МГц) предназначен ДЛЯ частоты микросхемы. Кварцевый формирования тактовой резонатор подключить к микросхеме установкой двух перемычек: на разъеме XP15 в положение «OSC» (в соответствии с рисунком 15) и установкой перемычки на разъеме ХР16.
- G1 (25 МГц) 7.2.3.3 Кварцевый генератор устанавливается ПО требованию. Предназначен для формирования тактовой частоты микросхемы установкой подключается К микросхеме двух перемычек: на разъеме XP15 в положении «GEN» (в соответствии с рисунком 15) и снятии перемычки на разъеме ХР16.

7.2.4 Кнопки и переключатели

- 7.2.4.1 Кнопки SB2 «RESET» и SB1 «WAKEUP» предназначены для сброса и вывода микросхемы из режима STANDBY (см. руководство по эксплуатации ТСКЯ.431296.008РЭ на микросхему 1986ВЕ1Т, раздел «Батарейный домен и часы реального времени»).
- 7.2.4.2 Переключатели SA1 SA3 предназначены для выбора режима запуска микросхемы (см. руководство по эксплуатации ТСКЯ.431296.008РЭ на микросхему 1986ВЕ1Т, раздел «Загрузочное ПЗУ и режимы работы микроконтроллера»).

7.2.5 Использование интерфейсов

7.2.5.1 Интерфейс Ethernet

Для работы с интерфейсом Ethernet необходимо подключить сетевой шнур к разъему XS14. Светодиодная индикация разъема XS14 реализуется

программным путем. Для подключения светодиодов необходимо на разъеме XP3 установить 2 перемычки: позиция XP3(9) в положение «YLW_LED» и позиция XP3(10) в положение «GRN_LED» (в соответствии с рисунком 7). Убедитесь, ЧТО разъеме XP2 установлены перемычки: на XP2(1) в положение «RXP», позиция XP2(2) в положение «RXN», позиция позиция XP2(3) в положение «TXP», позиция XP2(4) в положение «TXN» (в соответствии с рисунком 6).

Сконфигурировать внутренние регистры микросхемы согласно руководству по эксплуатации ТСКЯ.431296.008РЭ.

7.2.5.2 Интерфейс Fiber Optic Ethernet

Для работы с интерфейсом Fiber Optic Ethernet необходимо на разъеме XP9 установить 3 перемычки: позиция XP9(4) в положение «FXEN», позиция XP9(12) в положение «FTX», позиция XP9(14) в положение «FSD» в соответствии с рисунком 13, на разъеме XP5 установить перемычку в позицию XP5(4) в положение «FRX» в соответствии с рисунком 9. Для подключения Fiber Optic Ethernet к изделию используется SFP-модуль OptiCin SFP-155-MM. Для получения информации о модуле предусмотрено подключение к SFP-модулю управляющих сигналов микросхемы с помощью выводов PC5, PC9, PC10, PC11. Для этого необходимо установить 3 перемычки на разъеме XP29 в положение «1», «2», «3» в соответствии с рисунком 15. Подробнее описание SFP-модуля см. http://www.opticin.ru.

Для работы с оптическим приемопередатчиком необходимо написать программу, предусматривающую настройку микросхемы 1986BE1T.

7.2.5.3 Интерфейс USB.

Работа с интерфейсом USB не требует внешних переключений на изделии. Сигналы идут на соответствующие выводы микросхемы. В качестве источника тактирования USB следует выбрать кварцевый резонатор BQ1 (8 МГц) и с помощью настройки схемы внутренней PLL USB получить частоту 48 МГц. Перемычка на разъеме XP24 служит для подачи питания +5. Перемычка на разъеме XP24 предусмотрена для питания микросхемы, так как ток потребления от интерфейса USB ограничивается управляющим устройством Host и не превышает 500 мА.

7.2.5.4 Интерфейс SPI.

Ha плате предусмотрено подключение карт памяти micro-SD по интерфейсу SPI. Для работы с картой памяти необходимо на разъеме XP9 В установить 4 перемычки: позиция ХР9(2) положение «SSP1RXD», позиция XP9(3) в положение «SSP1TXD», позиция XP9(5) в положение «SSP1SCK», позиция XP9(10) в положение «SSP1FSS» в соответствии с рисунком 13. Сконфигурировать регистры микросхемы для работы с интерфейсом SPI согласно руководству по эксплуатации ТСКЯ.431296.008РЭ.

7.2.5.5 Интерфейс CAN.

На плате предусмотрено подключение К интерфейсу CAN c использованием первого или второго интерфейса CAN микросхемы. Для этого необходимо установить соответственную перемычку на разъеме ХР31 (показан на рисунке 18). Перемычка в позиции XP31(1) в положении «CAN2» подключает к интерфейсной микросхеме второй периферийный блок микросхемы, перемычка в позиции XP31(2) в положении «CAN1» – первый периферийный блок микросхемы. Для работы необходимо сконфигурировать блок CAN микросхемы согласно руководству по эксплуатации ТСКЯ.431296.008РЭ. Перемычка на разъеме XP32 служит для выбора нагрузки CAN-шины: если она установлена, то подключена нагрузка 120 Ом. Назначение выводов разъема ХР33 представлено в таблице 6.

Таблица 6

Номер вывода ХР33	Название цепи
1, 4, 5, 6, 8, 9	Не подключены
2	CAN_L
3	GND
7	CAN_H

7.2.5.6 Интерфейс по ГОСТ Р 52070-2003.

Для начала работы с интерфейсом по ГОСТ Р 52070-2003 необходимо выбрать первое (замкнуты контакты 1 и 2) или второе (замкнуты контакты 2 и 3) положение перемычки на разъеме ХР20 (см. рисунок 16). Первое положение перемычки подключает каналы А (основной) **FOCT** Р В (резервный) первого интерфейса ПО 52070-2003 К приемопередатчикам, второе положение подключает каналы С (основной) и D (резервный) второго интерфейса к приемопередатчикам. Далее следует правильно выбрать положение конфигурационных перемычек XP3, XP7.

При подключении каналов A, B на разъеме XP7 необходимо установить 10 перемычек: позиция XP7(6) положение «PRDB+», позиция XP7(7) положение «PRDB-», позиция XP7(8) положение «PRDPRMA», позиция XP7(9) положение «PRDA-», позиция XP7(10) положение «PRDA+», XP7(11) положение «PRMB-», позиция XP7(12) позиция положение «PRDPRMB», позиция XP7(13) положение «PRMA+», позиция XP7(14) положение «PRMA-», позиция XP7(15) положение «PC15 PRMB+», соответствии с рисунком 11.

При подключении каналов C, D на разъеме XP3 установить 5 перемычек: позиция XP3(1) положение «PRDD+», позиция XP3(2) положение «PRDD-», позиция XP3(3) положение «PRDPRMC», позиция XP3(4) положение «PRDC+», позиция XP3(5) положение «PRDC-» в соответствии с рисунком 7, и на разъеме XP7 установить перемычек: позиция XP7(1) положение «PRDPRMD», позиция XP7(2) положение «PRMD-», позиция XP7(3) положение «PRMD+», позиция XP7(4) положение «PRMC-», позиция XP7(5) положение «PRMC+» в соответствии с рисунком 11.

Для подачи питания на интерфейсные микросхемы D7 и D8 предусмотрен переключатель SA4. Правое положение переключателя SA4 включает питание, левое — выключает. Ориентацию модуля отладочного смотреть по рисунку 3.

Сконфигурировать регистры контроллера интерфейса по ГОСТ Р 52070-2003 согласно руководству по эксплуатации ТСКЯ.431296.008РЭ. С помощью установки перемычек на разъемах XР17, XР19 к шине можно подключить нагрузочные резисторы общим номиналом 400 Ом.

Если не используется интерфейс ГОСТ Р 52070-2003, следует снять перемычку с разъема XP20, так как статические сигналы, ошибочно поданные на выводы интерфейсных микросхем, могут привести к выходу их из строя.

7.2.5.7 Интерфейсы RS-232 и SIR.

На плате предусмотрено подключение к приемопередатчику RS-232 (SIR) интерфейса UART1 или UART2. Для этого служит разъем XP6 (приведен на

рисунке 10). Перемычки в позиции XP6(1) положение «UART1» и в позиции XP6(2) положение «UART1» подключает UART1, перемычки в позиции XP6(1) положение «UART2» и в позиции XP6(2) положение «UART2» подключает UART2. Для подключения интерфейса RS-232 на разъеме XP8 (приведен на рисунке 12) необходимо установить перемычки в позиции XP8(1) положение «UART» и в позиции XP8(2) положение «UART», для подключения интерфейса SIR установить перемычки в позиции XP8(1) положение «SIR» и в позиции XP8(2) положение «SIR». Сконфигурировать регистры микросхемы согласно руководству по эксплуатации TCKЯ.431296.008РЭ. В режиме SIR необходимо убедиться, что на разъеме XP30 перемычка не установлена (установленная перемычка свидетельствует о том, что приемопередатчик находится в режиме «Shutdown»). Назначение выводов разъема XP13 приведено в таблице 7. Для связи компьютера и отладочной платы по интерфейсу RS-232 необходимо использовать нуль-модемный кабель RS-232 9F-9F 1,8м, входящий в состав комплекта.

Таблица 7

Номер вывода ХР13	Описание
1, 4, 6, 7, 8, 9	Не подключены
2	RX (вход приемника)
3	ТХ (выход передатчика)
5	GND (общий)

7.2.5.8 Интерфейс по ГОСТ 18977-79.

Для подключения интерфейса по ГОСТ 18977-79 используется разъем XP14. Назначение выводов разъема XP14 приведено в таблице 8.

Для подключения портов микросхемы к выводам микросхем D4, D5 (см. рисунок 3), D6 (расположена на обратной стороне модуля отладочного) необходимо на разъеме XP1 установить 10 перемычек: позиция XP1(1) в положение «IN1+», позиция XP1(2) в положение «IN4+», позиция XP1(4) в положение «IN2+», позиция XP1(5) в положение «IN3+», позиция XP1(7) в положение «IN4-», позиция XP1(8) в положение «IN3-»,позиция XP1(9) в положение «IN2-», позиция XP1(10) в положение «IN1-», позиция XP1(27) В положение «OUT1-», XP1(28) позиция в положение «OUT1+» в соответствии с рисунком 5. На разъеме XP4 установить 2 перемычки: позиция XP4(2) в положение «OUT2+», позиция XP4(3) в положение «OUT2-» в соответствии с рисунком 8. Сконфигурировать регистры микросхемы согласно руководству по эксплуатации TCKЯ.431296.008PЭ.

Сопротивление нагрузки для передатчиков интерфейса должно быть не менее 600 Ом.

Таблица 8

Номер вывода ХР14	Описание
1	A1_1 (вход последовательного кода, IN1+)
2	A2_1 (вход последовательного кода, IN2+)
3	A1_2 (вход последовательного кода, IN3+)
4	A2_2 (вход последовательного кода, IN4+)
5, 8, 13	GND
6	B1_1 (вход последовательного кода, IN1–)
7	B2_1 (вход последовательного кода, IN2–)
9	B1_2 (вход последовательного кода, IN3–)
10	B2_2 (вход последовательного кода, IN4–)
11	OUTA1 (выход последовательного кода, OUT2+)
12	OUTB1 (выход последовательного кода, OUT2-)
14	OUTA2 (выход последовательного кода, OUT1+)
15	OUTB2 (выход последовательного кода, OUT1-)

7.2.6 Аналоговые блоки.

7.2.6.1 Для подключения аналоговых разъемов к портам микросхемы необходимо XP9 на разъеме установить перемычку позицию XP9(1) положение «DAC1» в соответствии с рисунком 13, на разъеме XP5 позиция ХР5(3) в положение перемычки: «R9» позиция XP5(3) в положение «ADC2», позиция XP5(4) в положение «ADC4», позиция XP5(5) в положение «REFD1», замкнуть позицию XP5(8) в положении «ADC3» в соответствии с рисунком 9. При установке на разъем XP5 перемычки в позицию XP5(3) положение «R9» к порту микросхемы подключается подстроечный резистор R9 10 кОм. При установке на разъем XP5 перемычки в позицию XP5(3) положение «ADC2» подключается аналоговый разъем XS6.

Сигнал с ЦАП можно выводить на SMA-разъем XS3 или на усилитель (D1, расположен на обратной стороне модуля отладочного) и звуковой выход (XS7). Перемычка на разъеме XP11 (см. рисунок 14) позволяет выбрать, куда выводить сигнал с ЦАП. Положение перемычки в положении «SMA» выбирает SMA-разъем, в положении «Audio» – аудио выход (разъем XS7).

7.2.6.2 Батарейный отсек

Для обеспечения автономного питания и функционирования часов реального времени и батарейного домена во время отсутствия основного питания Ucc на плате предусмотрен батарейный отсек под батарейку CR-2032 (X2) номиналом +3 В. В рабочем режиме перемычка на разъеме XP22 «BUCC» всегда должна быть замкнута.

7.2.6.3 Светодиодная индикация.

Для визуального контроля событий на плате установлена линейка светодиодов VD3 – VD10. Для подключения светодиодов к портам микросхемы необходимо замкнуть перемычки на разъеме XP12. Соответствие контактов разъема XP12 светодиодам и портам микросхемы показано в таблице 9.

Таблица 9

Номер перемычки разъема XP12	Вывод порта микросхемы 1986ВЕ1Т	Светодиод
1	PD[7]	VD3
2	PD[8]	VD7
3	PD[9]	VD4
4	PD[10]	VD8
5	PD[11]	VD5
6	PD[12]	VD9
7	PD[13]	VD6
8	PD[14]	VD10

7.2.6.4 Клавиатура.

На плате имеется клавиатура, состоящая из 6 кнопок SB3 – SB8, расположенных рядом с жидкокристаллическим модулем. Для подключения клавиатуры к выводам микросхемы необходимо на разъеме XP2 установить 6 перемычек: позиция XP2(8) В положение «LEFT», позиция XP2(9) «TOP», В положение «SELECT», позиция XP2(15) В положение

позиция XP2(17) в положение «ВОТТОМ», позиция XP2(18) в положение «ВАСК», позиция XP2(19) в положение «RIGHT» в соответствии с рисунком 6. Сконфигурировать порты микросхемы согласно руководству по эксплуатации ТСКЯ.431296.008РЭ. В исходном состоянии сигнальные цепи кнопок находятся в высоком логическом уровне. При нажатии кнопки на сигнальной цепи формируется низкий логический уровень.

7.2.6.5 Таймер 4

На клеммники XS8-XS11 выведены три прямых и три инверсных канала таймера 4, а также сигналы ETR4 и BRK4. Четвёртый канал таймера 4 (прямой и инверсный) выведен на светодиоды VD1 и VD2. Для подключения каналов таймера к микросхеме необходимо на разъеме XP1 установить 10 перемычек: «ETR4», позиция XP1(11) В положении позиция XP1(12) «ТІМ4_nCH3», позиция в положении ХР1(13) в положении «BRK4», «TIM4 nCH4», позиция XP1(14) В положении позиция XP1(15) в положении «ТІМ4 СН4», позиция XP1(16) в положении «ТІМ4 СН3», XP1(17) В «TIM4 nCH2», XP1(18) позиция положении позиция в положении «TIM4 nCH1», позиция XP1(19) в положении «TIM4 CH1», позиция XP1(20) в положении «ТІМ4_СН2» согласно рисунку 5.

Сконфигурировать регистры микросхемы согласно руководству по эксплуатации ТСКЯ.431296.008РЭ.

7.2.6.6 Жидкокристаллический модуль (ЖК-модуль).

На плате установлен ЖК-модуль МЭЛТ МТ–12864A. Для подключения выводов микросхемы к выводам модуля необходимо:

- на разъеме XP2 замкнуть 3 перемычки: позиция XP2(10) в положении «PE14», позиция XP2(11) в положении «PE13», позиция XP2(16) в положении «PE12» согласно рисунку 6;
- на разъеме XP1 установить 8 перемычек: позиция XP1(18) в положение «D7», позиция XP1(19) в положение «D6», позиция XP1(21) в положение «D5», позиция XP1(22) в положение «D4», позиция XP1(23) в положение «D3», позиция XP1(24) в положение «D2», позиция XP1(25) в положение «D0», позиция XP1(26) в положение «D1» согласно рисунку 5;

- на разъеме XP3 замкнуть 2 перемычками: позиция XP3(6) в положении «PC2», позиция XP3(8) в положении «PC0» согласно рисунку 7.
 - разомкнуть перемычку ХР23.

Подробную информацию о функционировании ЖК-модуля смотрите в спецификации на ЖК-модуль МЭЛТ МТ-12864A.

7.2.6.7 Универсальный разъем.

На плате установлен универсальный разъем для подключения внешних модулей (XP25 – XP28). Назначение выводов универсального разъема показано в таблице 10. На разъем выведены шина данных (32 разряда), шина адреса (32 разряда), управляющие сигналы (BE0 – BE3, ALE, RD, WR, BUSY, CLE), сигналы внешних прерываний EXTINT0 – EXTINT3, сигналы клавиатуры, питание (+3,3 B, +5 B) и «общий» (GND).

Таблица 10

Номер	Обозначение разъема					
вывода	XP25	XP25 XP26 XP27		XP28		
1	GND	GND	Address Bus[0]	+5V		
2	-	GND	GND	+5V		
3	Data Bus [31]	+3.3V	Address Bus[1]	GND		
4	Data Bus [30]	-	+3.3V	-		
5	+5V	BE0	Address Bus[2]	GND		
6	Data Bus [29]	BE1	Address Bus[3]	-		
7	Data Bus [27]	BE2	Address Bus[4]	GND		
8	Data Bus [28]	BE3	Address Bus[5]	GND		
9	Data Bus [25]	ALE(CLKO)	Address Bus[6]	-		
10	Data Bus [26]	-	Address Bus[7]	-		
11	Data Bus [23]	OE(RD)	Address Bus[8]	+3.3V		
12	Data Bus [24]	WE(WR)	Address Bus[9]	+3.3V		
13	Data Bus [21]	BUSY	Address Bus[10]	-		
14	Data Bus [22]	EXTINT0	Address Bus[11]	-		
15	Data Bus [19]	EXTINT3	Address Bus[12]	GND		
16	Data Bus [20]	CLE	Address Bus[13]	GND		
17	Data Bus [17]	-	GND	+3.3V		
18	Data Bus [18]	EXTINT1	-	+3.3V		
19	Data Bus [15]	GND	Address Bus[14]	+3.3V		
20	Data Bus [16]	GND	Address Bus[15]	+3.3V		
21	Data Bus [13]	EXTINT2	Address Bus[16]	-		
22	Data Bus [14]	PORTD[0]	Address Bus[17]	GND		
23	Data Bus [11]	-	Address Bus[18]	-		

Номер	Обозначение разъема					
вывода	XP25	XP26	XP27	XP28		
24	Data Bus [12]	PORTD[1]	Address Bus[19]	-		
25	Data Bus [9]	-	Address Bus[20]	-		
26	Data Bus [10]	PORTD[2]	Address Bus[21]	-		
27	Data Bus [7]	-	Address Bus[22]	-		
28	Data Bus [8]	PORTD[3]	Address Bus[23]	-		
29	Data Bus [5]	-	Address Bus[24]	-		
30	Data Bus [6]	PORTD[4]	Address Bus[25]	-		
31	Data Bus [3]	-	Address Bus[26]	-		
32	Data Bus [4]	PORTD[5]	Address Bus[27]	-		
33	+5V	-	Address Bus[28]	GND		
34	-	-	Address Bus[29]	GND		
35	Data Bus [1]	-	Address Bus[30]	-		
36	Data Bus [2]	-	+5V	+5V		
37	GND	-	Address Bus[31]	+5V		
38	Data Bus [0]	+5V	-	+5V		
39	GND	GND	GND	+5V		
40	GND	GND	-	-		

7.2.7 Подготовка к работе на модуле отладочном для микросхемы

До начала работы установить конфигурационные перемычки (расположенные вокруг контактного устройства X1), отвечающие за подключения портов ввода/вывода микросхемы к периферийным блокам в соответствии с таблицей 11 и рисунком 19. Если вы не используете в работе те или иные выводы этой микросхемы, рекомендуется перемычки не устанавливать. На модуле отладочном при поставке отсутствуют некоторые перемычки, это объясняется тем, что с обратной стороны платы они замкнуты проводником.

Для начала работы подключить источник питания 5 В к разъему XP21, сконфигурировать переключатели SA1 – SA3 для выбора требуемого режима запуска микросхемы, установить на разъеме XP2 перемычку в позиции XP2(7) в положение «1» согласно рисунку 6. Перемычка XP22 должна быть установлена. Включить питание платы с помощью переключателя SA5.

Подключить средства программирования и отладки. Далее можно приступать к работе.

Таблица 11

Разъем	Позиция	Положение	
	XP1(1) - XP1(2)	«IN1+» - «IN4+»	
	XP1(4) - XP1(5)	«IN2+» - «IN3+»	
XP1	XP1(7) - XP1(10)	«IN4-» - «IN1-»	
	XP1(18) - XP1(19)	«D7» - «D6»	
	XP1(27) - XP1(28)	«OUT1-» - «OUT1+»	
	XP2(7)	«1»	
	XP2(8)	«LEFT»	
	XP2(9)	«SELECT»	
	XP2(10)	«PE14»	
XP2	XP2(11)	«PE13»	
AF2	XP2(15)	«TOP»	
	XP2(16)	«PE12»	
	XP2(17)	«BOTTOM»	
	XP2(18)	«BACK»	
	XP2(19)	«RIGHT»	
XP3	XP3(9) - XP3 (10)	«YLW_LED» - «GRN_LED»	
XP4	XP4(2) - XP4(3)	«OUT2+» - «OUT2-»	
	XP5(1)	«O_OUT32»	
XP5	XP5(2)	«O_IN32»	
	XP5(4)	«FRX»	
XP6	XP6(1)	«UART1»	
	XP6(2)	«UART1»	
XP7	XP7(6) – XP7 (15)	«PRDB+» - «PRMB+»	
XP8	XP8(1)	«UART»	
AFO	XP8(2)	«UART»	
	XP9(14)	«FSD»	
XP9	XP9(12)	«FTX»	
	XP9(4)	«FXEN»	
XP15	XP15(1)	«GEN»	
XP16	XP16(1)	«OSC»	
XP22	XP22(1)	«BUCC»	
XP31	XP31(1)	«CAN1»	
AFSI	XP31(2)	«CAN1»	

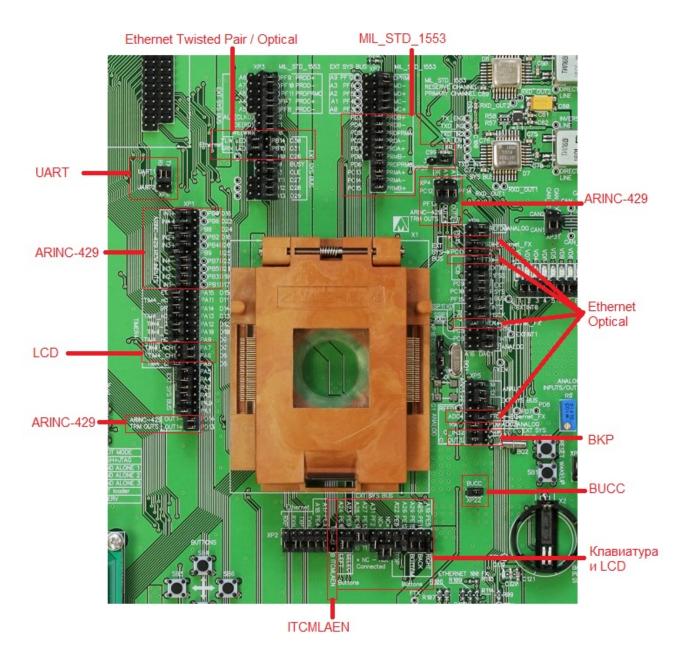


Рисунок 19 - Положение джамперов вокруг микросхемы