Описание демонстрационно-отладочной платы для 32разрядного микроконтроллера 1986BE1 EVAL 22.0 B rev. 4.

1. Назначение и состав.

- 1.1. Демонстрационно-отладочная плата EVAL 22.0 (далее отладочная плата) предназначена для ознакомления с 32-разрядным микроконтроллером 1986BE1, а также для разработки собственных проектов на её основе.
- 1.2. В состав платы входят:
 - 1.2.1. Контактирующее устройство для микроконтроллера 1986BE1 (D1);
 - 1.2.2. Конфигурационные перемычки и переключатели;
 - 1.2.3. Схема питания, сброса, тактирования и программирования контроллера;
 - 1.2.4. Схемы реализации интерфейсов (RS-232, Ethernet, USB, SPI, CAN, ГОСТ Р 52070-2003, SIR, ГОСТ Р 18977-79);
 - 1.2.5. Схема подключения каналов таймера 4;
 - 1.2.6. Схема подключения LCD-дисплея, клавиатуры из шести кнопок и линейки светодиодов;
 - 1.2.7. Разъемы для подачи/снятия аналоговых сигналов;
 - 1.2.8. Универсальный разъем для подключения внешних модулей.

2. Общее описание платы.

До начала работы рекомендуется корректно установить конфигурационные перемычки (расположенные вокруг микроконтроллера D1), отвечающие за подключения портов ввода/вывода контроллера к периферийным блокам. Если вы не используете в работе те или иные выводы контроллера рекомендуется оставить перемычки разомкнутыми. На отладочной плате при поставке отсутствуют некоторые перемычки, это объясняется тем, что с обратной стороны платы (на слое ВОТТОМ) они замкнуты проводником.

Для начала работы подключите источник питания +5B, 2A к разъему XP43, необходимым образом сконфигурируйте переключатели SW1 – SW3 для выбора требуемого режима запуска микроконтроллера, установите перемычку XP21, позиция ITCMLAEN в положение 1 (верхнее положение), убедитесь, что перемычка XP22 (ВUCC) установлена. Включите питание платы с помощью переключателя SW12. Подключите средства программирования и отладки. Далее можно приступать к работе.

2.1. Микроконтроллер.

На плате расположены:

- 2.1.1. Контактирующее устройство D1 для микроконтроллера 1986BE1;
- 2.1.2. Разъем XP9 для подключения средств отладки и программирования. Назначение выводов разъема XP9 представлено в таблице 1;

Таблица 1. Назначение выводов разъема XP9.

Номер вывода	Назначение
1, 2	+3,3 B
3	nTRST

4, 6, 8, 10, 12, 14, 16, 18, 20	GND
5	TDI
7	TMS
9	TCK
11, 17, 19	Подтяжка к GND
13	TDO
15	RESET

- 2.1.3. Кварцевый резонатор BQ2 (8МГц) предназначен для формирования тактовой частоты микроконтроллера. Кварцевый генератор D16 (25МГц, не установлен на плате), предназначен для формирования тактовой частоты микроконтроллера. Кварцевый генератор подключается к микроконтроллеру установкой перемычки XP51 в положении GEN и снятии перемычки XP52. Кварцевый резонатор подключается к микроконтроллеру установкой перемычки XP51 в положении OSC и установкой перемычки XP52;
- 2.1.4. Кварцевый резонатор BQ1 (32768 Гц) предназначен для формирования тактовой частоты периферийного блока «Батарейный домен и часы реального времени» микроконтроллера. Кварцевый резонатор BQ1 подключается к микроконтроллеру с помощью установки перемычек на блоке перемычек XP5, позиции O_IN32, O_OUT32 (левое положение);
- 2.1.5. Разъем XP23, предназначенный для подачи автономного питания (батарейка типа CR-2032, +3B) для работы периферийного блока «Батарейный домен и часы реального времени» микроконтроллера при отсутствии основного питания Ucc;
- 2.1.6. Кнопка RESET (SW5) и WAKEUP (SW4), предназначенные для сброса и вывода из режима «STANDBY» контроллера;
- 2.1.7. Переключатели SW1 SW3, предназначенные для выбора режима запуска контроллера (см. спецификацию на микроконтроллер, раздел «Загрузочное ПЗУ и режимы работы микроконтроллера»);
- 2.1.8. Конфигурационные перемычки специального назначения: XP21, позиция ITCMLAEN (1 контроллер начинает выполнять программу из внутренней Flash-памяти, 0 контроллер начинает выполнять программу из внешней памяти; в большинстве случаев должна быть установлена в положение 1), XP22 (ВUCC всегда установлена, предназначен для сброса часов реального времени).

2.2. Интерфейс Ethernet.

2.2.1. Для работы с интерфейсом Ethernet необходимо подключить сетевой шнур к разъему XP26. Светодиодная индикация разъема XP26 реализуется программным путем. Для подключения светодиодов необходимо установить на блоке перемычек XP1 позиции PB14 и PB15 в левое положение (YELLOW

LED и GREEN LED). Убедитесь, что на блоке перемычек XP21 позиции RXN, RXP, TXN, TXP, замкнуты (изначально на печатной плате в слое ВОТТОМ эти перемычки замкнуты).

Также необходимо правильно сконфигурировать внутренние регистры контроллера 1986BE1.

2.2.2. Для работы с Fiber Optic Ethernet необходимо на блоке перемычек XP6, позиции PD15, PC8, PC7 установить перемычки в положение FSD, FTX FXEN, на блоке перемычек XP5, позиция PD11 установить перемычку в положение FRX. Для подключения Fiber Optic Ethernet к плате EVAL22.0 используется SFP-модуль OptiCin SFP-155-MM. Для получения информации о модуле предусмотрено подключение к SFP-модулю управляющих сигналов (выводы контроллера PC5, PC9, PC10, PC11), также необходимо установить перемычки на блоке перемычек XP4, позиции 1, 2, 3. Подробнее смотрите описание SFP-модуля.

Для работы с оптическим приемопередатчиком необходимо написать программу, предусматривающую настройку контроллера 1986ВЕ1.

2.3. Интерфейс USB.

Для работы с интерфейсом USB не требуется каких-либо внешних переключений на плате EVAL 22.0. Все сигналы идут на соответствующие выводы контроллера. В качестве источника тактирования USB следует выбрать кварцевый резонатор 8 МГц и с помощью внутренней PLL USB получить частоту 48 МГц. Перемычка XP40 служит для подачи питания +5В на плату от USB интерфейса. Стоит помнить, что ток потребления от USB интерфейса ограничивается host-контроллером и не может превышать 500 мА, поэтому питать всю периферию платы USB не в состоянии, данная перемычка предусмотрена только для питания контроллера 1986ВЕ1.

2.4. Интерфейс SPI.

На плате предусмотрено подключение карт памяти microSD по SPI интерфейсу. Для работы с картой памяти необходимо на блоке перемычек XP6, позиции PC5, PC6, PC7, PC8 установить перемычки в положения SSP1TXD, SSP1RXD, SSP1SCK, SSP1FSS. Также необходимо правильно сконфигурировать регистры контроллера 1986BE1 для работы с SPI-интерфейсом.

2.5. Интерфейс CAN.

На плате предусмотрено подключение к интерфейсной микросхеме CAN либо первого, либо второго CAN интерфейса микроконтроллера. Для этого имеются блок перемычек XP17. Верхнее положение перемычек подключает к интерфейсной микросхеме второй периферийный блок микроконтроллера, нижнее — первый. Для работы необходимо правильно настроить блок CAN контроллера 1986ВЕ1. Перемычка XP37 служит для выбора нагрузки CAN-шины, если она установлена, то подключена нагрузка 120 Ом. Назначение выводов разъема XP36 представлено в таблице 2.

Номер вывода	Название цепи
1, 4, 5, 6, 8, 9	Не подключены
2	CAN_L
3	GND
7	CAN_H

2.6. Интерфейс по ГОСТ Р52070-2003.

Для начала работы с интерфейсом по ГОСТ Р52070-2003 необходимо выбрать либо первое (замкнуты 1 и 2 контакты), либо второе (замкнуты 2 и 3 контакты) положение перемычки ХР46. Первое положение ХР46 подключает А (основной) и (резервный) каналы первого интерфейса по ГОСТ приемопередатчикам, второе положение ХР46 подключает С (основной) и D (резервный) каналы второго интерфейса к приемопередатчикам. Далее следует правильно выбрать положение конфигурационных перемычек микроконтроллера 1986ВЕ1. Для подключения А и В каналов на блоке перемычек XP2, позиции PC13, PC14, PC15, PD0 – PD6 необходимо установить перемычки в положения: PRMA+, PRMA-, PRDA+, PRDA-, PRD PRM A, PRMB+, PRMB-, PRDB+, PRDB-, PRD PRM В. Для подключения С и D каналов на блоке перемычек XP2, позиции PF3 – PF6, PF12 и блоке перемычек XP1, позиции PF7 – PF11 установить перемычки в положения: PRMC+, PRMC-, PRDC+, PRDC-, PRD PRM C, PRMD+, PRMD-, PRDD+, PRDD-, PRD PRM D. Для подачи питания на интерфейсные микросхемы D10 и D12 на плате установлен переключатель SW13. Правое положение переключателя SW13 - микросхемы включены, левое положение – питания нет. Также стоит снимать перемычку ХР46, если Вы не используете интерфейс ГОСТ Р52070-2003, так как статические сигналы, ошибочно поданные на выводы интерфейсных микросхем, могут привести к выходу их из строя. Для корректной работы необходимо правильно настроить регистры контроллера интерфейса по ГОСТ Р52070-2003. С помощью перемычек XP7, XP8 к шине можно подключить нагрузочные резисторы общим номиналом 400 Ом.

2.7. Интерфейсы RS-232 и SIR.

На плате предусмотрено подключение к приемопередатчику RS-232 (SIR) либо UART1, либо UART2 интерфейсы микроконтроллера. Для этого служит блок перемычек XP19. Верхнее положение перемычек (замкнуты 1 и 2 контакты) подключают UART1, нижнее положение перемычек (замкнуты 2 и 3 контакты) подключают UART2. Далее следует выбрать рабочий интерфейс: либо RS-232 (блок перемычек XP18, установить перемычки в нижнее положение), либо SIR (блок перемычек XP18, установить перемычки в верхнее положение). Также необходимо корректно произвести настройку регистров контроллера 1986ВЕ1. В режиме SIR стоит убедиться, что перемычка XP45 разомкнута, если она замкнута,

то приемопередатчик находится в режиме «Shutdown». Назначение выводов разъема XP35 (RS-232) приведено в таблице 3. Для связи компьютера и отладочной платы по интерфейсу RS-232 необходимо использовать нуль-модемный кабель.

Таблица 3. Назначение выводов разъем XP35.

Номер вывода	Описание
1, 4, 6, 7, 8, 9	Не подключены
2	RX (вход приемника)
3	ТХ (выход передатчика)
5	GND (общий)

2.8. Интерфейс по ГОСТ 18977-79

Для подключения портов микроконтроллера к выводам интерфейсных микросхем D4, D5, D6 необходимо на блоке перемычек XP20, позиции PB0 – PB7 установить перемычки в положение IN1+, IN1-, IN2+, IN2-, IN3+, IN3-, IN4+, IN4-, замкнуть перемычки положение PD13, PD14 (OUT1-, OUT1+). На блоке перемычек XP3, позиции PF13, PF14 установить перемычки в положении OUT2-, OUT2+. Также следует правильным образом настроить регистры контроллера 1986BE1.

Сопротивление нагрузки для передатчиков интерфейса должно быть не менее 600 Ом.

Назначение выводов разъема ХР34 приведено в таблице 4.

Таблица 4. Назначение выводов разъема XP34.

Номер вывода	Описание		
1	A1_1 (вход последовательного кода, IN1+)		
2	A2_1 (вход последовательного кода, IN2+)		
3	A1_2 (вход последовательного кода, IN3+)		
4	A2_2 (вход последовательного кода, IN4+)		
5, 8, 13	GND		
6	B1_1 (вход последовательного кода, IN1-)		
7	B2_1 (вход последовательного кода, IN2-)		
9	B1_2 (вход последовательного кода, IN3-)		

10	B2_2 (вход последовательного кода, IN4-)
11	OUTA1 (выход последовательного кода, OUT2+)
12	OUTB1 (выход последовательного кода, OUT2-)
14	OUTA2 (выход последовательного кода, OUT1+)
15	OUTB2 (выход последовательного кода, OUT1-)

2.9. Аналоговые блоки.

В правой части платы расположены аналоговые разъемы XP27 – XP32.

Для подключения аналоговых разъемов к портам контроллера необходимо на блоке перемычек XP6, позиция PE2 установить перемычку в положение DAC1 (правое положение), на блоке перемычек XP5, позиции PE0, PD11, PD9 установить перемычки в положение REFD1, ADC4, R14 или ADC2, замкнуть PD10. Перемычка PD12 изначально в слое Bottom на плате замкнута. Если перемычку PD9 установить в положение R14, то к порту контроллера подключается подстроечный резистор 10 КОм, если в положение ADC2, то подключается разъем XP27.

Сигнал с ЦАП можно выводить либо на SMA-разъем XP29, либо на усилитель (D2) и звуковой выход. XP33 позволяет выбрать, куда выводить сигнал с ЦАП. Верхнее положение перемычки выбирает SMA-разъем, нижнее – аудио выход (XP25).

2.10. Батарейный домен.

Для обеспечения автономного питания и функционирования часов реального времени и батарейного домена во время отсутствия основного питания Ucc на плате предусмотрен разъем под батарейку CR-2032 номиналом +3B. В рабочем режиме перемычка XP22 (BUCC) всегда должна быть замкнута.

2.11. Светодиодная индикация.

Для визуального контроля каких-либо событий на плате установлена линейка светодиодов VD6 – VD13. Для подключения светодиодов к портам контроллера необходимо замкнуть перемычки XP16. Светодиод VD6 подключен к PortD[7] микроконтроллера, VD7 – к PortD[8] и так далее, VD13 подключен к PortD[14].

2.12. Клавиатура.

На плате имеется клавиатура, состоящая из 6 кнопок (SW6 – SW11), расположенных рядом с жидкокристаллическим модулем. Для подключения клавиатуры к выводам контроллера необходимо установить на блоке перемычек XP21, позиции PE5, PE8 – PE11, PE15 перемычки в положение LEFT, SELECT, TOP, ВОТТОМ, ВАСК, RIGHT. Для работы с клавиатурой необходимо правильно сконфигурировать порты микроконтроллера. В исходном состоянии сигнальные цепи кнопок находятся в высоком логическом уровне. При нажатии кнопки на сигнальной цепи формируется низкий логический уровень.

2.13. Таймер 4.

На разъемы XP12 – XP15 выведены три прямых и три инверсных канала таймера 4, а также сигналы ETR4 и BRK4. Четвёртый канал таймера 4 (прямой и инверсный) выведен на светодиоды VD1 и VD2. Для подключения каналов таймера к микроконтроллеру необходимо на блоке перемычек XP20, позиции PA6 – PA15 установить перемычки в положение TIM4_CH2, TIM4_CH1, TIM4_nCH1, TIM4_nCH2, TIM4_CH3, TIM4_CH4, TIM4_nCH4, BRK4, TIM4_nCH3, ETR4. Также для работы с блоком таймера необходимо корректно сконфигурировать регистры микроконтроллера 1986BE1.

2.14. Жидкокристаллический модуль.

На плате установлен жидкокристаллический модуль МЭЛТ МТ–12864А. Для подключения выводов микроконтроллера к выводам модуля необходимо на блоке перемычек XP21, позиции PE12 – PE14 замкнуть перемычки; на блоке перемычек XP20, позиции PA6, PA7 установить перемычки в положение D6, D7, позиции PA0 – PA5 замкнуть перемычки (изначально в слое ВОТТОМ эти перемычки замкнуты); на блоке перемычек XP1, позиции PC0, PC2 замкнуть перемычки (изначально в слое ВОТТОМ эти перемычки замкнуты). Разомкнуть перемычку XP10 (RESET LCD). Подробную информацию о функционировании модуля смотрите в спецификации на МТ–12864А.

2.15. Универсальный разъем.

На плате установлен универсальный разъем для подключения внешних модулей (XP47 — XP50). Назначение выводов разъема смотрите в таблице 5. На разъем выведены шина данных (32 разряда), шина адреса (32 разряда), управляющие сигналы (BE0 — BE3, ALE, RD, WR, BUSY, CLE), сигналы внешних прерываний EXTINT0 — EXTINT3, сигналы клавиатуры, питание (+3,3B, +5B) и «земля».

Таблица 5. Назначение выводов универсального разъема (XP47 – XP50).

Обозначение разъема	XP47	XP48	XP49	XP50
Номер	111 17			
вывода				
1	GND	GND	Address Bus[0]	+5V
2	-	GND	GND	+5V
3	Data Bus [31]	+3.3V	Address Bus[1]	GND
4	Data Bus [30]	-	+3.3V	-
5	+5V	BE0	Address Bus[2]	GND
6	Data Bus [29]	BE1	Address Bus[3]	-
7	Data Bus [27]	BE2	Address Bus[4]	GND
8	Data Bus [28]	BE3	Address Bus[5]	GND
9	Data Bus [25]	ALE(CLKO)	Address Bus[6]	-
10	Data Bus [26]	-	Address Bus[7]	-
11	Data Bus [23]	OE(RD)	Address Bus[8]	+3.3V

12	Data Bus [24]	WE(WR)	Address Bus[9]	+3.3V
13	Data Bus [21]	BUSY	Address Bus[10]	-
14	Data Bus [22]	EXTINT0	Address Bus[11]	-
15	Data Bus [19]	EXTINT3	Address Bus[12]	GND
16	Data Bus [20]	CLE	Address Bus[13]	GND
17	Data Bus [17]	-	GND	+3.3V
18	Data Bus [18]	EXTINT1	-	+3.3V
19	Data Bus [15]	GND	Address Bus[14]	+3.3V
20	Data Bus [16]	GND	Address Bus[15]	+3.3V
21	Data Bus [13]	EXTINT2	Address Bus[16]	-
22	Data Bus [14]	PORTD[0]	Address Bus[17]	GND
23	Data Bus [11]	-	Address Bus[18]	-
24	Data Bus [12]	PORTD[1]	Address Bus[19]	-
25	Data Bus [9]	-	Address Bus[20]	-
26	Data Bus [10]	PORTD[2]	Address Bus[21]	-
27	Data Bus [7]	-	Address Bus[22]	-
28	Data Bus [8]	PORTD[3]	Address Bus[23]	-
29	Data Bus [5]	-	Address Bus[24]	-
30	Data Bus [6]	PORTD[4]	Address Bus[25]	-
31	Data Bus [3]	-	Address Bus[26]	-
32	Data Bus [4]	PORTD[5]	Address Bus[27]	-
33	+5V	-	Address Bus[28]	GND
34	-	-	Address Bus[29]	GND
35	Data Bus [1]	-	Address Bus[30]	-
36	Data Bus [2]	-	+5V	+5V
37	GND	-	Address Bus[31]	+5V
38	Data Bus [0]	+5V	-	+5V
39	GND	GND	GND	+5V
40	GND	GND	-	-