

КОМПЛЕКТ ОТЛАДОЧНЫЙ ДЛЯ МИКРОСХЕМЫ 1986ВЕ92У

Паспорт ТСКЯ.468998.011ПС

Содержание

1	Основные сведения об изделии и технические данные	3
2	Комплектность	5
3	Сроки эксплуатации, хранения и гарантии изготовителя	
	(поставщика)	6
4	Свидетельство об упаковывании	7
5	Свидетельство о приемке	7
6	Сведения о рекламациях	8
7	Указания по эксплуатации	9

1 Основные сведения об изделии и технические данные

1.1 Основные сведения об изделии

Комплект отладочный для микросхемы 1986ВЕ92У (далее изделие) предназначен:

- для демонстрации функционирования и оценки производительности микросхемы 1986ВЕ92У (далее микросхема) и ее основных периферийных модулей;
- для демонстрации функционирования микросхем интерфейсов CAN и COM (RS-232);
- для отладки собственных проектов с применением блоков на модуле отладочном;
 - для программирования памяти программ микросхемы.

Вид изделия в упаковке приведен на рисунке 1.

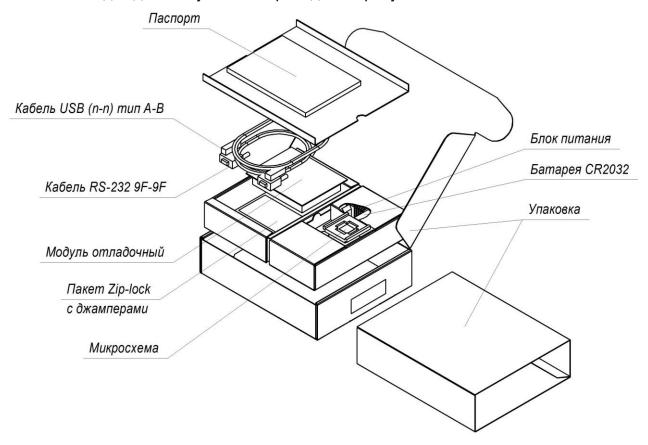


Рисунок 1 - Вид изделия в упаковке

Модуль отладочный ТСКЯ.469575.002, входящий в состав изделия, изображен на рисунке 2.

Рисунок 2 – Внешний вид модуля отладочного ТСКЯ.469575.002*

1.2 Основные технические данные:

- напряжение питания 5 В;
- возможность подключения к персональному компьютеру (далее ПК) через COM порт;
- возможность подключения к интерфейсам CAN и COM (RS-232) внешних устройств.

^{*} Внешний вид модуля отладочного может отличаться

2 Комплектность

Состав изделия должен соответствовать таблице 1.

Таблица 1

Обозначение	Наименование	Количество	Приме- чание
ТСКЯ.469575.002			1
	(заводской номер) Микросхема К1986ВЕ92УК		
ТСКЯ.431296.001СП	в спутнике-носителе СН64/1	2	1
-	Кабель RS-232 9F-9F 1,8 м	1	-
-	Кабель USB (n-n) тип А-В 1,5 м	1	-
-	Блок питания 5 В	1	2
ТСКЯ.468998.011ПС	Паспорт	1	-
-	Батарея CR2032	1	3
ТСКЯ.305646.005	Упаковка (тип 2)	1	-
-	Джамперы (перемычки)	9	4

Примечания

- 1 Одна микросхема устанавливается в контактное устройство модуля отладочного, вторая согласно рисунку 1.
- 2 Допускается замена без уведомления заказчика на аналогичный по характеристикам.
 - 3 Поставляется по требованию заказчика.
- 4 Входят в состав модуля отладочного, поставляются упакованными в Zip-lock пакет

Для работы с изделием дополнительно могут поставляться следующие модули, адаптеры и программное обеспечение:

- USB JTAG адаптер JEM-ARM-V2 (Phyton);
- USB JTAG адаптер ULINK2 (Keil);
- USB JTAG адаптер J-LINK (Segger);
- среда разработки CodeMaster-ARM (Phyton);
- среда разработки MDK-ARM (Keil).

3 Сроки эксплуатации, хранения и гарантии изготовителя (поставщика)

Гарантийный срок эксплуатации, в пределах гарантийного срока хранения, не менее 6 месяцев.

Гарантийный срок хранения комплекта отладочного с момента отгрузки – 12 месяцев.

Предприятие — изготовитель (поставщик) гарантирует качество и соответствие изделия всем требованиям конструкторской документации при соблюдении потребителем правил эксплуатации, транспортирования и хранения, установленных конструкторской (эксплуатационной) документацией, в течение гарантийного срока.

4 Свидетельство об упаковывании

Ком	плект отл	адочный для	микросхем	ы 1986ВЕ92У	ТСКЯ.468998.0	111
упакован	АО «П	КК Миландр»	согласно	требованиям	і конструкторск	ЮЙ
документ	ации и кс	мплектности г	іо таблице	1.		
(ли	чная подпі	1СЬ)		(расшифровка	а подписи)	_
(год	, месяц, чи	сло)	_			
		ь ство о прие м падочный для		ы 1986ВЕ92У	ТСКЯ.468998.0)11
	тствует н годным	конструкторсі і для эксплуат	•	ентации ТС	КЯ.468998.011	И
СКК						
МП						
-	(лі	ичная подпись)		(расши	фровка подписи)	
-	(год,	месяц, число)				

6 Сведения о рекламациях

Рекламации предъявляют в форме рекламационного акта по ГОСТ Р 55754-2013.

Уведомление о вызове представителя поставщика направлять по адресу: АО «ПКК Миландр», 124498, г. Москва, Зеленоград, Георгиевский проспект, дом 5, этаж 2, помещение I, комната 38. Факс: 8 (495) 981-54-36

Дополнительно запрос должен быть продублирован на электронный адрес: support@milandr.ru.

7 Указания по эксплуатации

Перед началом работы внимательно ознакомьтесь с данным разделом.

7.1 Элементы управления и коммутации, установленные на модуле отладочном, показаны на рисунке 3, их описание содержится в таблице 2.

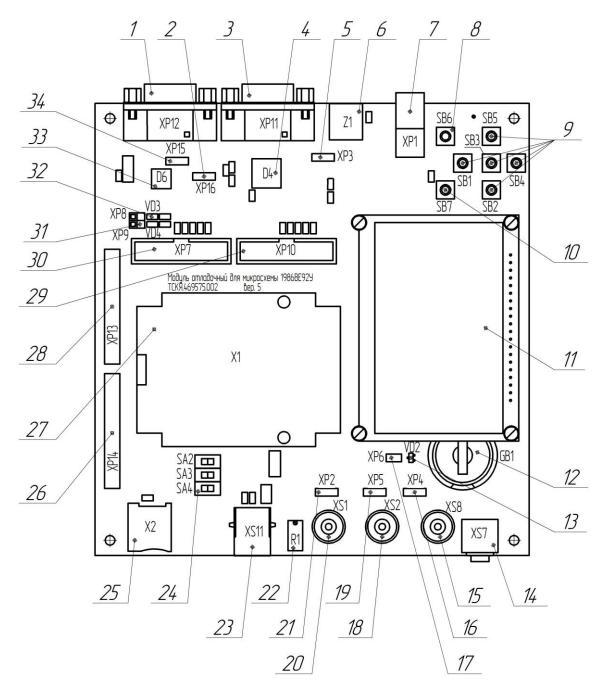


Рисунок 3 - Расположение элементов управления и коммутации на модуле отладочном

Таблица 2

Обозначение	Описание	Позиция
D4	Микросхема 5559ИН4,	4
	приемопередатчик RS-232	•
D6	Микросхема 5559ИН14,	33
	приемопередатчик CAN	
GB1	Батарейный отсек	12
R1	Подстроечный резистор канала 7 АЦП	22
SA2-SA4	Переключатели	24
SB1-SB5	Кнопки UP, LEFT, SELECT, DOWN , RIGHT	9
SB6	Кнопка RESET	8
SB7	Кнопка WAKEUP	10
VD2	Светодиодная индикация	13
VD3, VD4	Набор светодиодов на порте С	32
X1	Контактное устройство для микросхемы. Микросхема должна быть установлена в	27
/ / /	спутник-носитель СН64/1 ВШУК.301156.005ТУ	
X2	Разъем карты памяти microSD	25
XP1	Разъем питания 5В	7
XP2	T dobom milding ob	21
XP3		5
XP4	Разъем для установки конфигурационных	16
XP5	перемычек	19
XP6		17
XP7	Разъем отладки JTAG-A	30
XP8, XP9	Разъемы для установки конфигурационных перемычек	31
XP10	Разъем отладки JTAG-B	29
XP11	Разъем интерфейса RS-232	3
XP12	Разъем интерфейса CAN	1
XP13	Разъем портов В,С,D микросхемы	28
XP14	Разъем портов А,Е,Г микросхемы	26
XP15	Разъем для установки конфигурационных	34
XP16	перемычек	2
XS1	Разъем BNC внешнего сигнала канала 7 АЦП	20
XS2	Разъем BNC внешнего сигнала на 1-м входе	18
XS7	компаратора Разъем Audio 3,5 мм выхода ЦАП1 через звуковой усилитель	14
XS8		15
XS11	Разъем BNC выхода ЦАП1	
	Разъем USB-В	23
Z1	Фильтр питания	6
-	Жидкокристаллический модуль	11

- 7.2 Подробное описание элементов, входящих в состав изделия
- 7.2.1 Батарейный отсек GB1 предназначен для подачи автономного питания +3В от батарейки типа CR-2032 для работы периферийного блока «Батарейный домен и часы реального времени» микросхемы при отсутствии основного питания Ucc.
- 7.2.2 Подключение портов микросхемы к разъемам XP13, XP14 показано в таблице 3.

Таблица 3

Номер	Вывод микросхемы /питание		
контакта	XP13	XP14	
1,2	GND	GND	
3,4	+3,3V	+3,3V	
5	PD0	PA6	
6	PD1	PA7	
7	PD2	PA4	
8	PD3	PA5	
9	PD4	PA2	
10	PD5	PA3	
11	PD6	PA0	
12	-	PA1	
13	PB0	-	
14	PB1	-	
15	PB2	PE1	
16	PB3	PE3	
17	PB4	-	
18	PB5	-	
19	PB6	PF0	
20	PB7	PF1	
21	PB8	PF2	
22	PB9	PF3	
23	PB10	PF4	
24	PC0	PF5	
25	PC1	PF6	
26	PC2	-	
27,28	+5V	+5V	
29,30	GND	GND	

7.2.3 Разъем интерфейса RS-232 (XP11). Назначение выводов разъема представлено на рисунке 4 и в таблице 4.

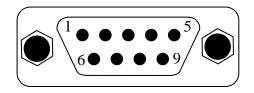


Рисунок 4 – Нумерация выводов разъема XP11 и XP12

Таблица 4

Номер вывода	Назначение вывода
1, 4, 6, 7, 8, 9	Не подключены
2	TXD
3	RXD
5	SG

7.2.4 Разъем интерфейса CAN (XP12). Назначение выводов разъема представлено на рисунке 4 и в таблице 5.

Таблица 5

Номер вывода	Назначение вывода
1, 4, 8	Не подключены
2	CAN_L
3	CAN_GND
5	CAN_SHLD
6	GND
7	CAN_H
8	CAN_V+

7.2.5 Назначение выводов разъемов отладки JTAG-A (XP7), JTAG-B (XP10) представлено в таблице 6 и на рисунке 5.

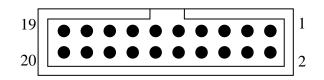


Рисунок 5 – Нумерация выводов разъемов XP7, XP10

Таблица 6

Номер	Назначение выводов			
вывода	XP7	XP10		
1, 2	-	+3,3 B		
3	nTRST, PB[4]	nTRST, PD[2]		
4, 6, 8, 10, 12, 14, 16, 18, 20		GND		
5	TDI, PB[3]	TDI, PD[3]		
7	TMS, PB[1]	TMS, PD[0]		
9	TCK, PB[2] TCK, PD[1]			
11	RTCK, подтяжка к цепи «GND» через резистор 10 кОм			
13	TDO, PB[0] TDO, PD[4]			
15	nSRST, подключен к выводу RESET микросхемы и к кнопке сброса SB6			
17	DBGRQ, подтяжка к цепи «GND» через резистор 10 кОм			
19	DBGACK, подтяжка к цепи «GND» через резистор 10 кОм			

7.2.6 Разъемы для установки конфигурационных перемычек (джамперов).

Разъем XP2 предназначен для выбора источника сигнала для 7-го канала АЦП. Положение «EXT_CON» (замкнуты контакты 1-2) — подключается разъем XS1, положение «TRIM» (замкнуты контакты 2-3) — подключается подстроечный резистор R1 10 кОм (см. рисунок 6).

Разъем XP3 предназначен для выбора источника питания для модуля. Положение «EXT_DC» (замкнуты контакты 1-2) — подключается внешний источник питания, положение «USB» (замкнуты контакты 2-3) — подключается разъем USB-B XS11 (см. рисунок 7).

Разъем XP4 предназначен для выбора назначения сигнала с выхода ЦАП1. Положение «EXT_CON» (замкнуты контакты 1-2) – подключается разъем XS8, положение «AMP» (замкнуты контакты 2-3) – подключается звуковой усилитель (см. рисунок 8).

Разъем XP5 предназначен для выбора источника сигнала на первом входе компаратора. Положение «DAC» (замкнуты контакты 1-2) – подключается разъем XS8, положение «EXT_CON» (замкнуты контакты 2-3) – подключается разъем XS2 (см. рисунок 9).

Разъем XP15 предназначен для выбора скорости передачи данных интерфейса CAN. Положение «125kb/s» (замкнуты контакты 1-2) — скорость составляет 125 кбайт/с, положение «500kb/s» (замкнуты контакты 2-3) — скорость составляет 500 кбайт/с (см. рисунок 10).

XP16 Разъем предназначен ДЛЯ выбора нагрузки ЛИНИИ интерфейса CAN. Положение «60 Ohm» (замкнуты контакты 1-2) – 60 подключается нагрузка Ом, положение «120 Ohm» (замкнуты контакты 2-3) – подключается нагрузка 120 Ом (см. рисунок 11).

На разъеме XP6 перемычка всегда установлена и предназначена для связи с микросхемой.

Разъемы XP8, XP9 предназначены для коммутации светодиодных индикаторов VD3, VD4. При использовании выводов порта С микросхемы совместно с работой интерфейса I2C, перемычки не устанавливать.

Разъемы для установки конфигурационных перемычек, использующихся для настройки изделия, подробно показаны на рисунках 6 – 11.

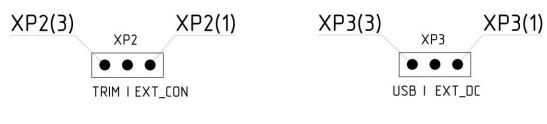


Рисунок 6 – Разъем ХР2

Рисунок 7 – Разъем ХРЗ

Рисунок 8 – Разъем ХР4

Рисунок 9 – Разъем ХР5



Рисунок 10 – Разъем ХР15

Рисунок 11 – Разъем XP16

7.2.7 Назначение установленных на плате переключателей и кнопок

7.2.7.1 Переключатели

Переключатели SA2 – SA4 предназначены для выбора режима запуска микросхемы (см. руководство по эксплуатации ТСКЯ.431296.001РЭ, раздел «Загрузочное ПЗУ и режимы работы микроконтроллера»).

Режимы работы отладочного устройства, в зависимости от положения переключателей SA2 – SA4, показаны в таблице 7.

Таблица 7

SA4	SA3	SA2	Режим работы
0	0	0	Микроконтроллер в режиме отладки. Процессор начинает выполнять программу из внутренней Flash-памяти программ, начиная с адреса 0x0800_0000. При этом установлен отладочный интерфейс JTAG_В
0	0	1	Микроконтроллер в режиме отладки. Процессор начинает выполнять программу из внутренней Flash-памяти программ, начиная с адреса 0x0800_0000. При этом разрешается работа отладочного интерфейса JTAG_A
0	1	0	Микропроцессор в режиме отладки. Процессор конфигурирует внешнюю системную шину в режим работы ROM с Wait_States = 0xF и начинает выполнять программу из внешней памяти, начиная с адреса 0x1000_0000, установленной на внешней системной шине. При этом разрешается работа отладочного интерфейса JTAG_В
0	1	1	Микропроцессор в режиме отладки. Процессор конфигурирует внешнюю системную шину в режим работы ROM с Wait_States = 0xF и начинает выполнять программу из внешней памяти, начиная с адреса 0x1000_0000, установленной на внешней системной шине. При этом отладочный интерфейс JTAG/SW заблокирован
1	1	0	UART загрузчик. Микроконтроллер через интерфейс UART2 на выводах PF[1:0] получает код программы в ОЗУ для исполнения

7.2.7.2 Кнопки

Кнопки SB1 «UP», SB2 «LEFT», SB3 «SELECT», SB4 «DOWN», SB5 «RIGHT» программируются пользователем.

Кнопки SB6 «RESET» и SB7 «WAKEUP» предназначены для аппаратного сброса и выхода микросхемы из режима STANDBY

(см. руководство по эксплуатации ТСКЯ.431296.001РЭ на микросхему 1986ВЕ92У, раздел «Батарейный домен и часы реального времени»).

- 7.3 Подготовка к работе изделия
- 7.3.1 При включенном изделии ЗАПРЕЩАЕТСЯ проводить подключение и отключение кабелей, адаптеров, перемычек к разъемам.
- 7.3.2 В контактное устройство X1 микросхему установить в спутнике-носителе СН64/1 ВШУК.301156.005ТУ (см. рисунок 12).

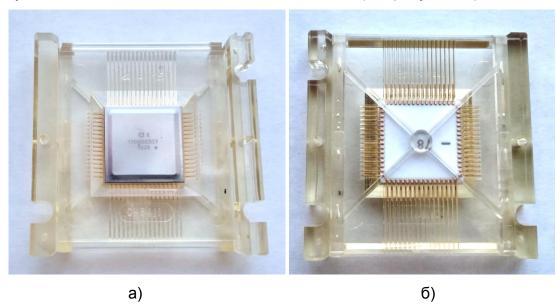


Рисунок 12 - Расположение микросхемы в спутнике-носителе (а - вид сверху, б - вид снизу)

При установке микросхемы в контактное устройство ориентироваться согласно ключу (см. рисунок 13).

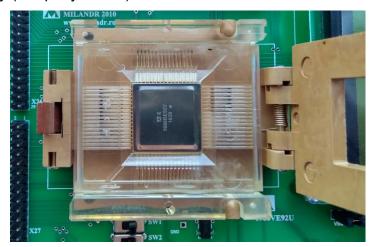


Рисунок 13 - Расположение микросхемы в контактном устройстве (контактное устройство открыто)

7.3.3 До начала работы установить конфигурационные перемычки согласно таблице 8.

Таблица 8

Разъем	Позиция	Положение
XP2	XP2(1) – XP2 (2)	«EXT_CON»
XP3	XP3(1) – XP3(2)	«EXT_DC»
XP4	XP4(1) – XP4 (2)	«EXT_CON»
XP5	XP5(2) – XP5(3)	«EXT_CON»
XP6	XP6(1)	«Vbat»
XP8	XP8(1)	1 и 2 контакты
XP9	XP9(1)	1 и 2 контакты
XP15	XP15(1) – XP15(2)	«125kb/s»
XP16	XP16(2) - XP16(3)	«120 Ohm»

- 7.3.4 Подключить USB JTAG адаптер к разъему XP7 или XP10. При использовании разъема XP7 установить переключатели SA2 в положение «1», SA3 и SA4 в положение «0». При использовании разъема XP10 установить переключатели SA2- SA4 в положение «0».
 - 7.3.5 Подключить источник питания 5 В к разъему ХР1.
 - 7.3.6 Приступить к работе.